Skip to main content

DNA Stable Isotope Probing to Examine Organisms Involved in Biodegradation

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Abstract

In situ applications of molecular biology to terrestrial and aquatic ecosystems have advanced the study of activities of microorganisms without the need for cultivation. DNA-based fingerprinting tools, such as 16S-TTGE, T-RFLP, DGGE, or pyrosequencing, facilitate in assessing pesticide impacts on microbial community composition. Quantitative PCR or functional gene microarrays help us understand effects of pesticides on genes of interest. Such tools improve our understanding of environmental impacts on microbial phylogeny or function, though few can link a specific organism to its function in situ. Stable isotope probing (SIP) emerged specifically to provide this linkage. SIP approaches vary in sensitivity, specificity, and inference space, depending on biomolecules targeted to obtain phylogenetic information. Combining SIP with “omics” tools further characterizes responses of microbial communities to environmental events. Herein we have reviewed strengths and weaknesses of common SIP techniques, with emphasis on the ecology of pesticide degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanderud, Z. T., & Lennon, J. T. (2011). Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria. Applied and Environmental Microbiology, 77(13), 4589–4596.

    CAS  Google Scholar 

  • Addison, S. L., McDonald, I. R., & Lloyd-Jones, G. (2010). Stable isotope probing: Technical considerations when resolving 15N-labeled RNA in gradients. Journal of Microbiological Methods, 80(1), 70–75.

    CAS  Google Scholar 

  • Aoyagi, T., Morishita, F., Sugiyama, Y., Ichikawa, D., Mayumi, D., Kikuchi, Y., Ogata, A., Muraoka, K., Habe, H., & Hori, T. (2018). Identification of active and taxonomically diverse 1, 4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. The ISME Journal, 1. https://doi.org/10.1038/s41396-018-0201-2.

    CAS  Google Scholar 

  • Baran, R., Lau, R., Bowen, B. P., Diamond, S., Jose, N., Garcia-Pichel, F., & Northen, T. R. (2017). Extensive turnover of compatible solutes in cyanobacteria revealed by deuterium oxide (D2O) stable isotope probing. ACS Chemical Biology, 12(3), 674–681. https://doi.org/10.1021/acschembio.6b00890.

    Article  CAS  Google Scholar 

  • Belfrage, P., Elovson, J., & Olivecrona, T. (1965). Radioactivity in blood and liver partial glycerides, and liver phospholipids after intravenous administration to carbohydrate-fed rats of chyle containing double-labeled triglycerides. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 106(1), 45–55.

    CAS  Google Scholar 

  • Bichat, F., Mulvaney, R., & Sims, G. (1999). Microbial utilization of heterocyclic nitrogen from atrazine. Soil Science Society of America Journal, 63(1), 100–110.

    CAS  Google Scholar 

  • Borodina, E., Cox, M. J., McDonald, I. R., & Murrell, J. C. (2005). Use of DNA-stable isotope probing and functional gene probes to investigate the diversity of methyl chloride-utilizing bacteria in soil. Environmental Microbiology, 7(9), 1318–1328.

    CAS  Google Scholar 

  • Boschker, H. T. S., Nold, S. C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R. J., & Cappenberg, T. E. (1998). Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 392, 801. https://doi.org/10.1038/33900.

    Article  CAS  Google Scholar 

  • Bossio, D. A., Scow, K. M., Gunapala, N., & Graham, K. (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36(1), 1–12.

    CAS  Google Scholar 

  • Buckley, D. H., Huangyutitham, V., Hsu, S.-F., & Nelson, T. A. (2007). Stable isotope probing with 15N achieved by disentangling the effects of genome G+ C content and isotope enrichment on DNA density. Applied and Environmental Microbiology, 73(10), 3189–3195.

    CAS  Google Scholar 

  • Buddin, W. (1914). Partial sterilisation of soil by volatile and non-volatile antiseptics. The Journal of Agricultural Science, 6(4), 417–451.

    Google Scholar 

  • Cadisch, G., Espana, M., Causey, R., Richter, M., Shaw, E., Morgan, J. A. W., Rahn, C., & Bending, G. D. (2005). Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils. Rapid Communications in Mass Spectrometry, 19(11), 1424–1428.

    CAS  Google Scholar 

  • Calvin, M. R. R. B. (1948). The path of carbon in photosynthesis. Science, 107, 476. https://doi.org/10.1126/science.107.2784.476.

    Article  CAS  Google Scholar 

  • Cavalca, L., Hartmann, A., Rouard, N., & Guy, S. (1999). Diversity of tfd C genes: Distribution and polymorphism among 2, 4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS Microbiology Ecology, 29(1), 45–58.

    CAS  Google Scholar 

  • Chang, Y.-J., Long, P. E., Geyer, R., Peacock, A. D., Resch, C. T., Sublette, K., Pfiffner, S., Smithgall, A., Anderson, R. T., Vrionis, H. A., Stephen, J. R., Dayvault, R., Ortiz-Bernad, I., Lovley, D. R., & White, D. C. (2005). Microbial incorporation of 13C-labeled acetate at the field scale: Detection of microbes responsible for reduction of U(VI). Environmental Science & Technology, 39(23), 9039–9048. https://doi.org/10.1021/es051218u.

    Article  CAS  Google Scholar 

  • Chen, Y., & Murrell, J. C. (2010). When metagenomics meets stable-isotope probing: Progress and perspectives. Trends in Microbiology, 18(4), 157–163.

    CAS  Google Scholar 

  • Chen, Y., Dumont, M. G., Neufeld, J. D., Bodrossy, L., Stralis-Pavese, N., McNamara, N. P., Ostle, N., Briones, M. J., & Murrell, J. C. (2008). Revealing the uncultivated majority: Combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environmental Microbiology, 10(10), 2609–2622.

    CAS  Google Scholar 

  • Chen, Y., Tao, L., Wu, K., & Wang, Y. (2016). Shifts in indigenous microbial communities during the anaerobic degradation of pentachlorophenol in upland and paddy soils from southern China. Environmental Science and Pollution Research, 23(22), 23184–23194. https://doi.org/10.1007/s11356-016-7562-8.

    Article  CAS  Google Scholar 

  • Chen, S.-C., Duan, G.-L., Ding, K., Huang, F.-Y., & Zhu, Y.-G. (2018). DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiology Ecology, 94(3), fiy026.

    Google Scholar 

  • Cho, J.-C., & Tiedje, J. M. (2002). Quantitative detection of microbial genes by using DNA microarrays. Applied and Environmental Microbiology, 68(3), 1425–1430.

    CAS  Google Scholar 

  • Clement, B. G., Kehl, L. E., DeBord, K. L., & Kitts, C. L. (1998). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods, 31(3), 135–142.

    CAS  Google Scholar 

  • Cronkite, E., Fliedner, T., Bond, V., Rubini, J., Brecher, G., & Quastler, H. (1959). Dynamics of hemopoietic proliferation in man and mice studied by H3-thymidine incorporation into DNA. Annals of the New York Academy of Sciences, 77(1), 803–820.

    CAS  Google Scholar 

  • Cupples, A. M., & Sims, G. K. (2007). Identification of in situ 2, 4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biology and Biochemistry, 39(1), 232–238.

    CAS  Google Scholar 

  • Cupples, A. M., Shaffer, E. A., Chee-Sanford, J. C., & Sims, G. K. (2007). DNA buoyant density shifts during 15N-DNA stable isotope probing. Microbiological Research, 162(4), 328–334.

    CAS  Google Scholar 

  • Dallinger, A., & Horn, M. A. (2014). Agricultural soil and drilosphere as reservoirs of new and unusual assimilators of 2, 4-dichlorophenol carbon. Environmental Microbiology, 16(1), 84–100.

    CAS  Google Scholar 

  • DeRito, C. M., Pumphrey, G. M., & Madsen, E. L. (2005). Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Applied and Environmental Microbiology, 71(12), 7858–7865.

    CAS  Google Scholar 

  • Dias, A. C. F., Dini-Andreote, F., Hannula, S. E., Andreote, F. D., Pereira e Silva, M. C., Salles, J. F., de Boer, W., van Veen, J., & van Elsas, J. D. (2013). Different selective effects on rhizosphere bacteria exerted by genetically modified versus conventional potato lines. PLoS One, 8(7), e67948. https://doi.org/10.1371/journal.pone.0067948.

    Article  CAS  Google Scholar 

  • Dils, R., & Hübscher, G. (1959). The incorporation in vitro of [Me-14C] choline into the phospholipids of rat-liver mitochondria. Biochimica et Biophysica Acta, 32, 293–294.

    CAS  Google Scholar 

  • Dumont, M. G., Pommerenke, B., Casper, P., & Conrad, R. (2011). DNA-, rRNA-and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environmental Microbiology, 13(5), 1153–1167.

    CAS  Google Scholar 

  • España, M., Rasche, F., Kandeler, E., Brune, T., Rodriguez, B., Bending, G. D., & Cadisch, G. (2011a). Assessing the effect of organic residue quality on active decomposing fungi in a tropical Vertisol using 15N-DNA stable isotope probing. Fungal Ecology, 4(1), 115–119.

    Google Scholar 

  • España, M., Rasche, F., Kandeler, E., Brune, T., Rodriguez, B., Bending, G. D., & Cadisch, G. (2011b). Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using 15N-DNA stable isotope probing. Pedobiologia, 54(3), 187–193.

    Google Scholar 

  • Felske, A., & Akkermans, A. (1998). Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soils. Microbial Ecology, 36(1), 31–36.

    CAS  Google Scholar 

  • Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341(6147), 752–758.

    CAS  Google Scholar 

  • Fortney, N. W., He, S., Kulkarni, A., Friedrich, M. W., Holz, C., Boyd, E. S., & Roden, E. E. (2018). Stable isotope probing of microbial iron reduction in Chocolate Pots hot spring, Yellowstone National Park. Applied and Environmental Microbiology: AEM. https://doi.org/10.1128/AEM.02894-17.

  • Gallagher, E., McGuinness, L., Phelps, C., Young, L., & Kerkhof, L. (2005). 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Applied and Environmental Microbiology, 71(9), 5192–5196.

    CAS  Google Scholar 

  • Geyer, R., Peacock, A., Miltner, A., Richnow, H.-H., White, D., Sublette, K., & Kästner, M. (2005). In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environmental Science & Technology, 39(13), 4983–4989.

    CAS  Google Scholar 

  • Ginige, M. P., Keller, J., & Blackall, L. L. (2005). Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Applied and Environmental Microbiology, 71(12), 8683–8691.

    CAS  Google Scholar 

  • Girardi, C., Nowak, K. M., Carranza-Diaz, O., Lewkow, B., Miltner, A., Gehre, M., Schäffer, A., & Kästner, M. (2013). Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2, 4-D in water and soil – Use and limits of data obtained from aqueous systems for predicting their fate in soil. Science of the Total Environment, 444, 32–42.

    CAS  Google Scholar 

  • Gomez, A. M., Yannarell, A. C., Sims, G. K., Cadavid-Restrepo, G., & Herrera, C. X. M. (2011). Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology and Biochemistry, 43(6), 1275–1284.

    CAS  Google Scholar 

  • Herbst, F. A., Bahr, A., Duarte, M., Pieper, D. H., Richnow, H. H., Bergen, M., Seifert, J., & Bombach, P. (2013). Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics, 13(18–19), 2910–2920.

    CAS  Google Scholar 

  • Herrmann, S., Kleinsteuber, S., Chatzinotas, A., Kuppardt, S., Lueders, T., Richnow, H. H., & Vogt, C. (2010). Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environmental Microbiology, 12(2), 401–411.

    CAS  Google Scholar 

  • Herrmann, E., Young, W., Rosendale, D., Reichert-Grimm, V., Riedel, C. U., Conrad, R., & Egert, M. (2017). RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. BioMed Research International, 2017, 1829685.

    Google Scholar 

  • Huaidong, H., Waichin, L., Riqing, Y., & Zhihong, Y. (2017). Illumina-based analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination. Pedosphere, 27(3), 569–578.

    Google Scholar 

  • Hungate, B. A., Mau, R. L., Schwartz, E., Caporaso, J. G., Dijkstra, P., van Gestel, N., Koch, B. J., Liu, C. M., McHugh, T. A., & Marks, J. C. (2015). Quantitative microbial ecology through stable isotope probing. Applied and Environmental Microbiology, 81(21), 7570–7581.

    CAS  Google Scholar 

  • Hutchens, E., Radajewski, S., Dumont, M. G., McDonald, I. R., & Murrell, J. C. (2004). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environmental Microbiology, 6(2), 111–120.

    CAS  Google Scholar 

  • Jameson, E., Taubert, M., Coyotzi, S., Chen, Y., Eyice, Ö., Schäfer, H., Murrell, J. C., Neufeld, J. D., & Dumont, M. G. (2017). DNA-, RNA-, and protein-based stable-isotope probing for high-throughput biomarker analysis of active microorganisms. In W. R. Streit & R. Daniel (Eds.), Metagenomics: Methods and protocols (pp. 57–74). New York: Springer. https://doi.org/10.1007/978-1-4939-6691-2_5.

    Chapter  Google Scholar 

  • Jayamani, I., & Cupples, A. M. (2015a). Stable isotope probing and high-throughput sequencing implicate Xanthomonadaceae and Rhodocyclaceae in ethylbenzene degradation. Environmental Engineering Science, 32(3), 240–249.

    CAS  Google Scholar 

  • Jayamani, I., & Cupples, A. M. (2015b). Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site. Environmental Science and Pollution Research, 22(13), 10340–10350.

    CAS  Google Scholar 

  • Jehmlich, N., Schmidt, F., Hartwich, M., von Bergen, M., Richnow, H. H., & Vogt, C. (2008). Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Communications in Mass Spectrometry, 22(18), 2889–2897.

    CAS  Google Scholar 

  • Jeon, C., Park, W., Padmanabhan, P., DeRito, C., Snape, J., & Madsen, E. (2003). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proceedings of the National Academy of Sciences, 100(23), 13591–13596.

    CAS  Google Scholar 

  • Jeon, C. O., Park, W., Ghiorse, W. C., & Madsen, E. L. (2004). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. International Journal of Systematic and Evolutionary Microbiology, 54(1), 93–97.

    CAS  Google Scholar 

  • Johnson, T. A., & Sims, G. K. (2011). Introduction of 2, 4-dichlorophenoxyacetic acid into soil with solvents and resulting implications for bioavailability to microorganisms. World Journal of Microbiology and Biotechnology, 27(5), 1137–1143.

    CAS  Google Scholar 

  • Kanissery, R. G., Welsh, A., Gomez, A., Connor, L., & Sims, G. K. (2018). Identification of metolachlor mineralizing bacteria in aerobic and anaerobic soils using DNA-stable isotope probing. Biodegradation, 29(2), 117–128.

    CAS  Google Scholar 

  • Kasai, Y., Takahata, Y., Manefield, M., & Watanabe, K. (2006). RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Applied and Environmental Microbiology, 72(5), 3586–3592.

    CAS  Google Scholar 

  • Kim, S. J., Park, S. J., Cha, I. T., Min, D., Kim, J. S., Chung, W. H., Chae, J. C., Jeon, C. O., & Rhee, S. K. (2014). Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environmental Microbiology, 16(1), 189–204.

    CAS  Google Scholar 

  • Kitagawa, W., & Kamagata, Y. (2014). Diversity of 2, 4-dichlorophenoxyacetic acid (2, 4-D)-degradative genes and degrading bacteria. In Biodegradative Bacteria (pp. 43–57). New York: Springer.

    Google Scholar 

  • Kowalczyk, A., Eyice, Ö., Schäfer, H., Price, O. R., Finnegan, C. J., van Egmond, R. A., Shaw, L. J., Barrett, G., & Bending, G. D. (2015). Characterization of para-nitrophenol-degrading bacterial communities in river water by using functional markers and stable isotope probing. Applied and Environmental Microbiology, 81(19), 6890–6900.

    CAS  Google Scholar 

  • Lajtha, L., Oliver, R., & Ellis, F. (1954). Incorporation of 32P and adenine 14C into DNA by human bone marrow cells in vitro. British Journal of Cancer, 8(2), 367.

    CAS  Google Scholar 

  • Lane, N. (2015). The unseen world: Reflections on Leeuwenhoek (1677) ‘Concerning little animals’. Philosophical Transactions of the Royal Society B, 370(1666), 20140344.

    Google Scholar 

  • Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Thurber, R. L. V., & Knight, R. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814.

    CAS  Google Scholar 

  • Launay, H., Hansen, C. M., & Almdal, K. (2007). Hansen solubility parameters for a carbon fiber/epoxy composite. Carbon, 45(15), 2859–2865.

    CAS  Google Scholar 

  • Lerch, T. Z., Dignac, M.-F., Nunan, N., Bardoux, G., Barriuso, E., & Mariotti, A. (2009). Dynamics of soil microbial populations involved in 2, 4-D biodegradation revealed by FAME-based stable isotope probing. Soil Biology and Biochemistry, 41(1), 77–85.

    CAS  Google Scholar 

  • Li, X., Lin, Z., Luo, C., Bai, J., Sun, Y., & Li, Y. (2015). Enhanced microbial degradation of pentachlorophenol from soil in the presence of earthworms: Evidence of functional bacteria using DNA-stable isotope probing. Soil Biology and Biochemistry, 81, 168–177.

    CAS  Google Scholar 

  • Lin, J. L., Radajewski, S., Eshinimaev, B. T., Trotsenko, Y. A., McDonald, I. R., & Murrell, J. C. (2004). Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environmental Microbiology, 6(10), 1049–1060.

    CAS  Google Scholar 

  • Liu, Y.-J., Liu, S.-J., Drake, H. L., & Horn, M. A. (2013). Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases. FEMS Microbiology Ecology, 86(1), 114–129.

    CAS  Google Scholar 

  • Liu, J., Wang, J., Zhao, C., Hay, A. G., Xie, H., & Zhan, J. (2016). Triclosan removal in wetlands constructed with different aquatic plants. Applied Microbiology and Biotechnology, 100(3), 1459–1467. https://doi.org/10.1007/s00253-015-7063-6.

    Article  CAS  Google Scholar 

  • Lolas, I. B., Chen, X., Bester, K., & Nielsen, J. L. (2012). Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography. Microbiology, 158(11), 2796–2804.

    CAS  Google Scholar 

  • Lu, Y., & Conrad, R. (2005). In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 309(5737), 1088–1090.

    CAS  Google Scholar 

  • Lu, Y., Murase, J., Watanabe, A., Sugimoto, A., & Kimura, M. (2004). Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiology Ecology, 48(2), 179–186.

    CAS  Google Scholar 

  • Lu, Y., Abraham, W. R., & Conrad, R. (2007). Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environmental Microbiology, 9(2), 474–481.

    CAS  Google Scholar 

  • Lueders, T., Manefield, M., & Friedrich, M. W. (2004a). Enhanced sensitivity of DNA-and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environmental Microbiology, 6(1), 73–78.

    CAS  Google Scholar 

  • Lueders, T., Wagner, B., Claus, P., & Friedrich, M. W. (2004b). Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environmental Microbiology, 6(1), 60–72.

    CAS  Google Scholar 

  • Lünsmann, V., Kappelmeyer, U., Benndorf, R., Martinez-Lavanchy, P. M., Taubert, A., Adrian, L., Duarte, M., Pieper, D. H., Bergen, M., & Müller, J. A. (2016). In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environmental Microbiology, 18(4), 1176–1186.

    Google Scholar 

  • Luo, C., Xie, S., Sun, W., Li, X., & Cupples, A. M. (2009). Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Applied and Environmental Microbiology, 75(13), 4644–4647.

    CAS  Google Scholar 

  • MacGregor, B. J., Boschker, H. T., & Amann, R. (2006). Comparison of rRNA and polar-lipid-derived fatty acid biomarkers for assessment of 13C-substrate incorporation by microorganisms in marine sediments. Applied and Environmental Microbiology, 72(8), 5246–5253.

    CAS  Google Scholar 

  • Mahmood, S., Paton, G. I., & Prosser, J. I. (2005). Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environmental Microbiology, 7(9), 1349–1360.

    CAS  Google Scholar 

  • Manefield, M., Whiteley, A. S., Griffiths, R. I., & Bailey, M. J. (2002a). RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied and Environmental Microbiology, 68(11), 5367–5373.

    CAS  Google Scholar 

  • Manefield, M., Whiteley, A. S., Ostle, N., Ineson, P., & Bailey, M. J. (2002b). Technical considerations for RNA-based stable isotope probing: An approach to associating microbial diversity with microbial community function. Rapid Communications in Mass Spectrometry, 16(23), 2179–2183.

    CAS  Google Scholar 

  • Marlow, J. J., Skennerton, C. T., Li, Z., Chourey, K., Hettich, R. L., Pan, C., & Orphan, V. J. (2016). Proteomic stable isotope probing reveals biosynthesis dynamics of slow growing methane based microbial communities. Frontiers in Microbiology, 7, 563.

    Google Scholar 

  • Marsh, K. L., Sims, G. K., & Mulvaney, R. L. (2005). Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil. Biology and Fertility of Soils, 42(2), 137. https://doi.org/10.1007/s00374-005-0004-2.

    Article  CAS  Google Scholar 

  • Maxwell, J. S. S., & Gerald, K. (2008). Distribution of tetracycline and erythromycin resistance genes among diverse bacteria isolated from swine manure-impacted environments. Urbana-Champaign: University of Illinois.

    Google Scholar 

  • McCaig, A. E., Glover, L. A., & Prosser, J. I. (2001). Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Applied and Environmental Microbiology, 67(10), 4554–4559.

    CAS  Google Scholar 

  • McGrath, K. C., Mondav, R., Sintrajaya, R., Slattery, B., Schmidt, S., & Schenk, P. M. (2010). Development of an environmental functional gene microarray for soil microbial communities. Applied and Environmental Microbiology, 76(21), 7161–7170.

    CAS  Google Scholar 

  • McMurray, W., Strickland, K., Berry, J., & Rossiter, R. (1957). Incorporation of 32P-labelled intermediates into the phospholipids of cell-free preparations of rat brain. Biochemical Journal, 66(4), 634.

    CAS  Google Scholar 

  • Mervosh, T. L., Sims, G. K., Stoller, E. W., & Ellsworth, T. R. (1995). Clomazone sorption in soil: Incubation time, temperature, and soil moisture effects. Journal of Agricultural and Food Chemistry, 43(8), 2295–2300.

    CAS  Google Scholar 

  • Meselson, M., & Stahl, F. W. (1958). The replication of DNA in Escherichia coli. Proceedings of the National Academy of Sciences, 44(7), 671–682.

    CAS  Google Scholar 

  • Miller, L. G., Warner, K. L., Baesman, S. M., Oremland, R. S., McDonald, I. R., Radajewski, S., & Murrell, J. C. (2004). Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms1. Geochimica et Cosmochimica Acta, 68(15), 3271–3283.

    CAS  Google Scholar 

  • Mohanty, S. R., Bodelier, P. L., Floris, V., & Conrad, R. (2006). Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Applied and Environmental Microbiology, 72(2), 1346–1354.

    CAS  Google Scholar 

  • Morris, S. A., Radajewski, S., Willison, T. W., & Murrell, J. C. (2002). Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Applied and Environmental Microbiology, 68(3), 1446–1453.

    CAS  Google Scholar 

  • Mosbæk, F., Kjeldal, H., Mulat, D. G., Albertsen, M., Ward, A. J., Feilberg, A., & Nielsen, J. L. (2016). Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. The ISME Journal, 10, 2405. https://doi.org/10.1038/ismej.2016.39. https://www.nature.com/articles/ismej201639#supplementary-information.

    Article  CAS  Google Scholar 

  • Neufeld, J. D., Chen, Y., Dumont, M. G., & Murrell, J. C. (2008). Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environmental Microbiology, 10(6), 1526–1535.

    CAS  Google Scholar 

  • Oka, A., Phelps, C., McGuinness, L., Mumford, A., Young, L., & Kerkhof, L. (2008). Identification of critical members in a sulfidogenic benzene-degrading consortium by DNA stable isotope probing. Applied and Environmental Microbiology, 74(20), 6476–6480.

    CAS  Google Scholar 

  • Osborn, A. M., Moore, E. R., & Timmis, K. N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology, 2(1), 39–50.

    CAS  Google Scholar 

  • Padmanabhan, P., Padmanabhan, S., DeRito, C., Gray, A., Gannon, D., Snape, J., Tsai, C., Park, W., Jeon, C., & Madsen, E. (2003). Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Applied and Environmental Microbiology, 69(3), 1614–1622.

    CAS  Google Scholar 

  • Paes, F., Liu, X., Mattes, T. E., & Cupples, A. M. (2015). Elucidating carbon uptake from vinyl chloride using stable isotope probing and Illumina sequencing. Applied Microbiology and Biotechnology, 99(18), 7735–7743.

    CAS  Google Scholar 

  • Qiu, Q., Conrad, R., & Lu, Y. (2009). Cross-feeding of methane carbon among bacteria on rice roots revealed by DNA-stable isotope probing. Environmental Microbiology Reports, 1(5), 355–361.

    CAS  Google Scholar 

  • Quideau, S. A., McIntosh, A. C., Norris, C. E., Lloret, E., Swallow, M. J., & Hannam, K. (2016). Extraction and analysis of microbial phospholipid fatty acids in soils. Journal of Visualized Experiments: JoVE, 114, e54360.

    Google Scholar 

  • Radajewski, S., & Murrell, J. C. (2002). Stable isotope probing for detection of methanotrophs after enrichment with 13CH4. In Gene probes (pp. 149–157). Berlin: Springer.

    Google Scholar 

  • Radajewski, S., Ineson, P., Parekh, N. R., & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. Nature, 403(6770), 646.

    CAS  Google Scholar 

  • Redmond, M. C., Valentine, D. L., & Sessions, A. L. (2010). Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Applied and Environmental Microbiology, 76(19), 6412–6422.

    CAS  Google Scholar 

  • Richards, M. A., Lie, T. J., Zhang, J., Ragsdale, S. W., Leigh, J. A., & Price, N. D. (2016). Exploring hydrogenotrophic methanogenesis: A genome scale metabolic reconstruction of methanococcus maripaludis. Journal of Bacteriology, 198(24), 3379–3390. https://doi.org/10.1128/jb.00571-16.

    Article  CAS  Google Scholar 

  • Roh, H., Yu, C.-P., Fuller, M. E., & Chu, K.-H. (2009). Identification of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine-degrading microorganisms via 15N-stable isotope probing. Environmental Science & Technology, 43(7), 2505–2511.

    CAS  Google Scholar 

  • Rupassara, S. I., Larson, R. A., Sims, G. K., & Marley, K. A. (2002). Degradation of atrazine by hornwort in aquatic systems. Bioremediation Journal, 6(3), 217–224. https://doi.org/10.1080/10889860290777576.

    Article  CAS  Google Scholar 

  • Saleh-Lakha, S., Miller, M., Campbell, R. G., Schneider, K., Elahimanesh, P., Hart, M. M., & Trevors, J. T. (2005). Microbial gene expression in soil: Methods, applications and challenges. Journal of Microbiological Methods, 63(1), 1–19.

    CAS  Google Scholar 

  • Santos, I. C., Smuts, J., Choi, W.-S., Kim, Y., Kim, S. B., & Schug, K. A. (2018). Analysis of bacterial FAMEs using gas chromatography–vacuum ultraviolet spectroscopy for the identification and discrimination of bacteria. Talanta, 182, 536–543.

    CAS  Google Scholar 

  • Seifert, J., Taubert, M., Jehmlich, N., Schmidt, F., Völker, U., Vogt, C., Richnow, H. H., & Von Bergen, M. (2012). Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrometry Reviews, 31(6), 683–697.

    CAS  Google Scholar 

  • Shaffer, E., Sims, G., Cupples, A., Smyth, C., Chee-Sanford, J., & Skinner, A. (2010). Atrazine biodegradation in a Cisne soil exposed to a major spill. International Journal of Soil, Sediment and Water, 3(2), 1–26.

    Google Scholar 

  • Sims, G. K. (2008). Stable isotope probing to investigate microbial function in soil. Recent Research Development Soil Science, 2, 64–85.

    Google Scholar 

  • Sims, G., & Dunigan, E. (1984). Diurnal and seasonal variations in nitrogenase activity (C2H2 reduction) of rice roots. Soil Biology and Biochemistry, 16(1), 15–18.

    CAS  Google Scholar 

  • Singleton, D. R., Powell, S. N., Sangaiah, R., Gold, A., Ball, L. M., & Aitken, M. D. (2005). Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Applied and Environmental Microbiology, 71(3), 1202–1209. https://doi.org/10.1128/AEM.71.3.1202-1209.2005.

    Article  CAS  Google Scholar 

  • Smellie, R. M., McIndoe, W., & Davidson, J. N. (1953). The incorporation of 15N, 35S and 14C into nucleic acids and proteins of rat liver. Biochimica et Biophysica Acta, 11, 559–565.

    CAS  Google Scholar 

  • Stevens, R. (1926). The use of intravenous injections of radium chloride in some of the malignant lymphomata. American Journal of Roentgenology, 16, 155–161.

    Google Scholar 

  • Sul, W. J., Park, J., Quensen, J. F., Rodrigues, J. L., Seliger, L., Tsoi, T. V., Zylstra, G. J., & Tiedje, J. M. (2009). DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Applied and Environmental Microbiology, 75(17), 5501–5506.

    CAS  Google Scholar 

  • Sun, W., & Cupples, A. M. (2012). Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Applied and Environmental Microbiology, 78(4), 972–980.

    CAS  Google Scholar 

  • Sun, W., Krumins, V., Dong, Y., Gao, P., Ma, C., Hu, M., Li, B., Xia, B., He, Z., & Xiong, S. (2018). A combination of stable isotope probing, Illumina sequencing, and co-occurrence network to investigate thermophilic acetate-and lactate-utilizing bacteria. Microbial Ecology, 75(1), 113–122.

    CAS  Google Scholar 

  • Taubert, M., Vogt, C., Wubet, T., Kleinsteuber, S., Tarkka, M. T., Harms, H., Buscot, F., Richnow, H.-H., Von Bergen, M., & Seifert, J. (2012). Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. The ISME Journal, 6(12), 2291.

    CAS  Google Scholar 

  • Tejada, M., García-Martínez, A. M., Gómez, I., & Parrado, J. (2010). Application of MCPA herbicide on soils amended with biostimulants: Short-time effects on soil biological properties. Chemosphere, 80(9), 1088–1094.

    CAS  Google Scholar 

  • Thelusmond, J.-R., Strathmann, T. J., & Cupples, A. M. (2016). The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Science of the Total Environment, 571, 1241–1252. https://doi.org/10.1016/j.scitotenv.2016.07.154.

    Article  CAS  Google Scholar 

  • Tong, H., Chen, M., Li, F., Liu, C., Li, B., & Qiao, J. (2018). Effects of humic acid on pentachlorophenol biodegrading microorganisms elucidated by stable isotope probing and high-throughput sequencing approaches. European Journal of Soil Science, 69(2), 380–391.

    CAS  Google Scholar 

  • Uhlik, O., Leewis, M.-C., Strejcek, M., Musilova, L., Mackova, M., Leigh, M. B., & Macek, T. (2013). Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnology Advances, 31(2), 154–165.

    CAS  Google Scholar 

  • Wander, M., Dudley, R., Traina, S., Kaufman, D., Stinner, B., & Sims, G. (1996). Acetate fate in organic and conventionally managed soils. Soil Science Society of America Journal, 60(4), 1110–1116.

    CAS  Google Scholar 

  • Wang, X., Sharp, C. E., Jones, G. M., Grasby, S. E., Brady, A. L., & Dunfield, P. F. (2015). Stable-isotope probing identifies uncultured planctomycetes as primary degraders of a complex heteropolysaccharide in soil. Applied and Environmental Microbiology, 81(14), 4607–4615. https://doi.org/10.1128/aem.00055-15.

    Article  CAS  Google Scholar 

  • Wang, Y., Huang, W. E., Cui, L., & Wagner, M. (2016a). Single cell stable isotope probing in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology, 41, 34–42.

    CAS  Google Scholar 

  • Wang, Z., Liu, S., Xu, W., Hu, Y., Hu, Y., & Zhang, Y. (2016b). The microbiome and functions of black soils are altered by dibutyl phthalate contamination. Applied Soil Ecology, 99, 51–61.

    Google Scholar 

  • Webster, G., Watt, L. C., Rinna, J., Fry, J. C., Evershed, R. P., Parkes, R. J., & Weightman, A. J. (2006). A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environmental Microbiology, 8(9), 1575–1589.

    CAS  Google Scholar 

  • Wilhelm, R. C., Cardenas, E., Leung, H., Szeitz, A., Jensen, L. D., & Mohn, W. W. (2017). Long-term enrichment of stress-tolerant cellulolytic soil populations following timber harvesting evidenced by multi-Omic stable isotope probing. Frontiers in Microbiology, 8, 537. https://doi.org/10.3389/fmicb.2017.00537.

    Article  Google Scholar 

  • Wolt, J. D., Smith, J. K., Sims, J. K., & Duebelbeis, D. O. (1996). Products and kinetics of cloransulam-methyl aerobic soil metabolism. Journal of Agricultural and Food Chemistry, 44(1), 324–332.

    CAS  Google Scholar 

  • Wu, Y., Zeng, J., Zhu, Q., Zhang, Z., & Lin, X. (2017). pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Scientific Reports, 7, 40093.

    CAS  Google Scholar 

  • Xing, W., Li, J., Cong, Y., Gao, W., Jia, Z., & Li, D. (2017). Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing. Bioresource Technology, 229, 134–142. https://doi.org/10.1016/j.biortech.2017.01.010.

    Article  CAS  Google Scholar 

  • Young, W., Egert, M., Bassett, S., & Bibiloni, R. (2015). Detection of sialic acid-utilising bacteria in a caecal community batch culture using RNA-based stable isotope probing. Nutrients, 7(4), 2109.

    CAS  Google Scholar 

  • Youngblut, N. D., Barnett, S. E., & Buckley, D. H. (2018). HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments. PLoS One, 13(1), e0189616.

    Google Scholar 

  • Yu, C.-P., & Chu, K.-H. (2005). A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environmental Science & Technology, 39(24), 9611–9619.

    CAS  Google Scholar 

  • Zaprasis, A., Liu, Y.-J., Liu, S.-J., Drake, H. L., & Horn, M. A. (2010). Abundance of novel and diverse tfdA-like genes, encoding putative phenoxyalkanoic acid herbicide-degrading dioxygenases, in soil. Applied and Environmental Microbiology, 76(1), 119–128.

    CAS  Google Scholar 

  • Zhang, S., Wan, R., Wang, Q., & Xie, S. (2011). Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. International Biodeterioration & Biodegradation, 65(8), 1224–1228.

    CAS  Google Scholar 

  • Zhou, J., Xia, B., Huang, H., Palumbo, A. V., & Tiedje, J. M. (2004). Microbial diversity and heterogeneity in sandy subsurface soils. Applied and Environmental Microbiology, 70(3), 1723–1734.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald K. Sims .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sims, G.K., Gomez, A.M., Kanissery, R. (2019). DNA Stable Isotope Probing to Examine Organisms Involved in Biodegradation. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_3

Download citation

Publish with us

Policies and ethics