Skip to main content

Microbial Degradation of Pyridine and Pyridine Derivatives

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Pyridine derivatives belong to an important class of aromatic compounds that occur largely as a result of human activities, although they are not necessarily xenobiotic compounds. Pyridines can also be derivatized to form a wide variety of xenobiotic compounds ranging from drugs to pesticides. Analogs to phenolic compounds, pyridines exhibit properties that differ in some respects to homocyclic compounds, and this may have profound effects on their biodegradation. The presence of the ring nitrogen defines the reactivity of pyridine derivatives. After 60 years of research into biodegradation of pyridine derivatives, some themes have emerged; however, new discoveries continue to change our understanding of how pyridines are degraded in the environment. This chapter brings together the current state of knowledge on the biodegradation of pyridines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adav, S. S., Lee, D.-J., & Ren, N.-Q. (2007). Biodegradation of pyridine using aerobic granules in the presence of phenol. Water Research, 41(13), 2903–2910. https://doi.org/10.1016/j.watres.2007.03.038.

    Article  CAS  Google Scholar 

  • Ahmed, M. J., Ahmaruzzaman, M., & Reza, R. A. (2014). Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions. Journal of Colloid and Interface Science, 428, 222–234. https://doi.org/10.1016/j.jcis.2014.04.049.

    Article  CAS  Google Scholar 

  • Allan, J. R., Baird, N. D., & Kassyk, A. L. (1979). Some first row transition metal complexes of nicotinamide and nicotinic acid. Journal of Thermal Analysis, 16(1), 79–90. https://doi.org/10.1007/BF01909635.

    Article  CAS  Google Scholar 

  • Anderson, T. (1851). Ueber die producte der trocknen destillation thierischer materien. Annalen der Chemie und Pharmacie, 80(1), 44–65. https://doi.org/10.1002/jlac.18510800104.

    Article  Google Scholar 

  • Bai, Y., Sun, Q., Zhao, C., Wen, D., & Tang, X. (2008). Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001. Biodegradation, 19(6), 915–926. https://doi.org/10.1007/s10532-008-9193-3.

    Article  CAS  Google Scholar 

  • Bai, Y., Sun, Q., Zhao, C., Wen, D., & Tang, X. (2009). Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026. Journal of Industrial Microbiology & Biotechnology, 36(11), 1391–1400. https://doi.org/10.1007/s10295-009-0625-9.

    Article  CAS  Google Scholar 

  • Bak, F., & Widdel, F. (1986). Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Archives of Microbiology, 146(2), 170–176. https://doi.org/10.1007/BF00402346.

    Article  CAS  Google Scholar 

  • Baker, R. A., & Luh, M.-D. (1971). Pyridine sorption from aqueous solution by montmorillonite and kaolinite. Water Research, 5(10), 839–848. https://doi.org/10.1016/0043-1354(71)90020-0.

    Article  CAS  Google Scholar 

  • Banks, P., Ketchersid, M., & Merkle, M. (1979). The persistence of fluridone in various soils under field and controlled conditions. Weed Science, 27(6), 631–633.

    CAS  Google Scholar 

  • Baranda, A. B., Alonso, R. M., Jimenez, R. M., & Weinmann, W. (2006). Instability of calcium channel antagonists during sample preparation for LC-MS-MS analysis of serum samples. Forensic Science International, 156(1), 23–34. https://doi.org/10.1016/j.forsciint.2004.11.014.

    Article  CAS  Google Scholar 

  • Barton, D. H., & Delanghe, N. C. (1998). The selective functionalization of saturated hydrocarbons. Part 46. An investigation of Udenfriend’s system under Gif conditions. Tetrahedron, 54(18), 4471–4476.

    CAS  Google Scholar 

  • Bi, E., Schmidt, T. C., & Haderlein, S. B. (2006). Sorption of heterocyclic organic compounds to reference soils: Column studies for process identification. Environmental Science & Technology, 40(19), 5962–5970. https://doi.org/10.1021/es060470e.

    Article  CAS  Google Scholar 

  • Bi, E., Schmidt, T. C., & Haderlein, S. B. (2007). Environmental factors influencing sorption of heterocyclic aromatic compounds to soil. Environmental Science & Technology, 41(9), 3172–3178. https://doi.org/10.1021/es0623764.

    Article  CAS  Google Scholar 

  • Brown, D. R., Lewis, C., & Weinberger, B. I. (2015). Human exposure to unconventional natural gas development: A public health demonstration of periodic high exposure to chemical mixtures in ambient air. Journal of Environmental Science and Health, Part A, 50(5), 460–472.

    CAS  Google Scholar 

  • Buehrer, T. F. M., Mason, C. M., & Crowder, J. A. (1939). The chemical composition of rayless goldenrod (Aplopappus hartwegi). The American Journal of Pharmacy, 111, 105–112.

    CAS  Google Scholar 

  • Cacho, J., Fierro, I., Debán, L., Vega, M., & Pardo, R. (1999). Monitoring of the photochemical degradation of metamitron and imidacloprid by micellar electrokinetic chromatography and differential-pulse polarography. Pesticide Science, 55(9), 949–954.

    CAS  Google Scholar 

  • Cagle, F. W., & Smith, G. F. (1947). 2,2′-Bipyridine ferrous complex ion as indicator in determination of iron. Analytical Chemistry, 19(6), 384–385. https://doi.org/10.1021/ac60006a008.

    Article  CAS  Google Scholar 

  • Cain, R. B., Houghton, C., & Wright, K. A. (1974). Microbial metabolism of the pyridine ring: Metabolism of 2- and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp. The Biochemical Journal, 140, 293–300.

    CAS  Google Scholar 

  • Chakov, N. E., Collins, R. A., & Vincent, J. B. (1999). A re-investigation the electronic spectra of chromium(III) picolinate complexes and high yield synthesis and characterization of Cr2(μ-OH)2(pic)4·5H2O (Hpic=picolinic acid). Polyhedron, 18(22), 2891–2897. https://doi.org/10.1016/S0277-5387(99)00208-9.

    Article  CAS  Google Scholar 

  • Chang, I. K., & Foy, C. L. (1982). Complex formation of picloram and related chemicals with metal lons. Pesticide Biochemistry and Physiology, 18(2), 141–149. https://doi.org/10.1016/0048-3575(82)90099-2.

    Article  CAS  Google Scholar 

  • Chapman, R., & Harris, C. (1980). Persistence of chlorpyrifos in a mineral and an organic soil. Journal of Environmental Science & Health Part B, 15(1), 39–46.

    CAS  Google Scholar 

  • Chirico, R., Knipmeyer, S., Nguyen, A., & Steele, W. (1999). Thermodynamic properties of the methylpyridines. Part 2. Vapor pressures, heat capacities, critical properties, derived thermodynamic functions between the temperatures 250 K and 560 K, and equilibrium isomer distributions for all temperatures≥ 250 K. The Journal of Chemical Thermodynamics, 31(3), 339–378.

    CAS  Google Scholar 

  • Chishti, Z., Hussain, S., Arshad, K. R., Khalid, A., & Arshad, M. (2013). Microbial degradation of chlorpyrifos in liquid media and soil. Journal of Environmental Management, 114, 372–380. https://doi.org/10.1016/j.jenvman.2012.10.032.

    Article  CAS  Google Scholar 

  • Crans, D. C., Yang, L., Jakusch, T., & Kiss, T. (2000). Aqueous chemistry of ammonium (dipicolinato)oxovanadate(V): The first organic vanadium(V) insulin-mimetic compound. Inorganic Chemistry, 39(20), 4409–4416. https://doi.org/10.1021/ic9908367.

    Article  CAS  Google Scholar 

  • Crawford, J. J., Sims, G. K., Mulvaney, R. L., & Radosevich, M. (1998). Biodegradation of atrazine under denitrifying conditions. Applied Microbiology and Biotechnology, 49, 618–623. https://doi.org/10.1007/s002530051.

    Article  CAS  Google Scholar 

  • Dakin, H., & Dudley, H. (1914). Some limitations of the Kjeldahl method. Journal of Biological Chemistry, 17(2), 275–280.

    CAS  Google Scholar 

  • Dean, J. A. (1987). Handbook of organic chemistry. New York: McGraw-Hill, Inc.

    Google Scholar 

  • Deng, X., Wei, C., Ren, Y., & Chai, X. (2011). Isolation and identification of Achromobacter sp. DN-06 and evaluation of its pyridine degradation kinetics. Water, Air, & Soil Pollution, 221(1–4), 365–375. https://doi.org/10.1007/s11270-011-0796-7.

    Article  CAS  Google Scholar 

  • Dijkmans, T., Djokic, M. R., Van Geem, K. M., & Marin, G. B. (2015). Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC×GC – FID/SCD/NCD/TOF-MS. Fuel, 140, 398–406. https://doi.org/10.1016/j.fuel.2014.09.055.

    Article  CAS  Google Scholar 

  • Do, J. H., Lee, W. G., Theodore, K., & Chang, H. N. (1999). Biological removal of pyridine in heavy oil by Rhodococcus sp. KCTC 3218. Biotechnology and Bioprocess Engineering, 4(3), 205–209. https://doi.org/10.1007/bf02931930.

    Article  CAS  Google Scholar 

  • Dobson, K., Stephenson, M., Greenfield, P., & Bell, P. (1985). Identification and treatability of organics in oil shale retort water. Water Research, 19(7), 849–856.

    CAS  Google Scholar 

  • Duan, P., & Savage, P. E. (2011). Catalytic hydrothermal hydrodenitrogenation of pyridine. Applied Catalysis B: Environmental, 108–109, 54–60. https://doi.org/10.1016/j.apcatb.2011.08.007.

    Article  CAS  Google Scholar 

  • Elsayed, M. (2014). Application of ultraviolet and ultrasound irradiation for the degradation of pyridine in wastewater: A comparative study. Orbital: The Electronic Journal of Chemistry, 6(4), 195–204.

    Google Scholar 

  • Ensign, J. C., & Rittenberg, S. C. (1963). A crystalline pigment produced from 2-hydroxypyridine by Arthrobacter crystallopoietes n. sp. Archives of Microbiology, 47, 137–153.

    CAS  Google Scholar 

  • Errami, M., El Dib, G., Cazaunau, M., Roth, E., Salghi, R., Mellouki, A., & Chakir, A. (2016). Atmospheric degradation of pyridine: UV absorption spectrum and reaction with OH radicals and O3. Chemical Physics Letters, 662, 141–145.

    CAS  Google Scholar 

  • Feng, Y., Kaiser, J.-P., Minard, R. D., & Bollag, J.-M. (1994). Microbial transformation of ethylpyridines. Biodegradation, 5(2), 121–128. https://doi.org/10.1007/BF00700637.

    Article  CAS  Google Scholar 

  • Fetzner, S. (1998). Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Applied Microbiology and Biotechnology, 49(3), 237–250. https://doi.org/10.1007/s002530051164.

    Article  CAS  Google Scholar 

  • Fortune, W. B., & Mellon, M. G. (1938). Determination of iron with o-phenanthroline: A spectrophotometric study. Industrial and Engineering Chemistry, Analytical Edition, 10(2), 60–64. https://doi.org/10.1021/ac50118a004.

    Article  CAS  Google Scholar 

  • Fuller, T. K. (2015). Environmental justice and activism in Indianapolis. Lanham: Lexington Books.

    Google Scholar 

  • Gasparaviciute, R., Kropa, A., & Meskys, R. (2006). A new Arthrobacter strain utilizing 4-hydroxypyridine. Biologija, 4, 41–45.

    Google Scholar 

  • Gear, J. R., Michel, J. G., & Grover, R. (1982). Photochemical degradation of picloram. Pest Management Science, 13(2), 189–194.

    CAS  Google Scholar 

  • Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sediments. Reviews of Environmental Contamination and Toxicology, 215, 123–175. https://doi.org/10.1007/978-1-4614-1463-6_3.

    Article  CAS  Google Scholar 

  • Graber, E. R., & Borisover, M. D. (1998). Hydration-facilitated sorption of specifically interacting organic compounds by model soil organic matter. Environmental Science & Technology, 32(2), 258–263. https://doi.org/10.1021/es9705957.

    Article  CAS  Google Scholar 

  • Gregory, K. B., Vidic, R. D., & Dzombak, D. A. (2011). Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements, 7(3), 181–186.

    Google Scholar 

  • Guan, A. Y., Liu, C. L., Sun, X. F., Xie, Y., & Wang, M. A. (2016). Discovery of pyridine-based agrochemicals by using intermediate derivatization methods. Bioorganic & Medicinal Chemistry, 24(3), 342–353. https://doi.org/10.1016/j.bmc.2015.09.031.

    Article  CAS  Google Scholar 

  • Gulyamova, T. G., Kerbalaeva, A. M., Lobanova, K. V., Sagdiev, N. Z., & Sadykov, E. S. (2006). Transformation of 3-methylpyridine into nicotinic acid by the yeast S. cerevisiae. Chemistry of Natural Compounds, 42(2), 212–215. https://doi.org/10.1007/s10600-006-0081-y.

    Article  CAS  Google Scholar 

  • Harary, I. (1957a). Bacterial fermentation of nicotinic acid I. Anaerobic reversible hydroxylation of nicotinic acid to 6-hydroxynicotinic acid. The Journal of Biological Chemistry, 227, 823–831.

    CAS  Google Scholar 

  • Harary, I. (1957b). Bacterial fermentation of nicotinic acid I. End products. The Journal of Biological Chemistry, 227, 815–822.

    CAS  Google Scholar 

  • Harding, R. J., Nursten, H. E., & Wren, J. J. (1977). Basic compounds contributing to beer flavour. Journal of the Science of Food and Agriculture, 28(2), 225–232.

    CAS  Google Scholar 

  • Hawthorne, S. B., Sievers, R. E., & Barkley, R. M. (1985). Organic emissions from shale oil wastewaters and their implications for air quality. Environmental Science & Technology, 19(10), 992–997.

    CAS  Google Scholar 

  • Hayes, T., Severin, B. F. (2012). Barnett and Appalachian shale water management and reuse technologies. Final report to Secure Energy for America (RPSEA).

    Google Scholar 

  • Holloway, F., Cohen, M., & Westheimer, F. (1951). The mechanism of the chromic acid oxidation of isopropyl alcohol. The chromic acid ester1. Journal of the American Chemical Society, 73(1), 65–68.

    CAS  Google Scholar 

  • Holmes, P. E., Rittenberg, S. C., & Knackmuss, H. J. (1972). The bacterial oxidation of nicotine. VIII. Synthesis of 2,3,6-trihydroxypyridine and accumulation and partial characterization of the product of 2,6-dihydroxypyridine oxidation. The Journal of Biological Chemistry, 247, 7628–7633.

    CAS  Google Scholar 

  • Hong, A. P. K., & Chen, T.-C. (1996). Chelating extraction and recovery of cadmium from soil using pyridine-2,6-dicarboxylic acid. Water, Air, and Soil Pollution, 86(1–4), 335–346. https://doi.org/10.1007/BF00279165.

    Article  CAS  Google Scholar 

  • Houghton, C., & Cain, R. (1972). Microbial metabolism of the pyridine ring. Formation of pyridinediols (dihydroxypyridines) as intermediates in the degradation of pyridine compounds by micro-organisms. Biochemical Journal, 130(3), 879–893.

    CAS  Google Scholar 

  • Hu, J., Wang, T., Long, J., & Chen, Y. (2014). Hydrolysis, aqueous photolysis and soil degradation of fluroxypyr. International Journal of Environmental Analytical Chemistry, 94(3), 211–222. https://doi.org/10.1080/03067319.2013.803283.

    Article  CAS  Google Scholar 

  • Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., & Marshall, A. G. (2001). Elemental composition analysis of processed and unprocessed diesel fuel by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 15(5), 1186–1193.

    CAS  Google Scholar 

  • Hui, Y. H. (2012). Handbook of meat and meat processing. Boca Raton: CRC press.

    Google Scholar 

  • Imhoff-Stuckle, D., & Pfennig, N. (1983). Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Archives of Microbiology, 136(3), 194–198. https://doi.org/10.1007/BF00409843.

    Article  CAS  Google Scholar 

  • Jenkins, R. A., Tomkins, B., & Guerin, M. R. (2000). The chemistry of environmental tobacco smoke: Composition and measurement. Boca Raton: CRC Press.

    Google Scholar 

  • Jiménez, J. I., Canales, Á., Jiménez-Barbero, J., Ginalski, K., Rychlewski, L., García, J. L., & Díaz, E. (2008). Deciphering the genetic determinants for aerobic nicotinic acid degradation: The nic cluster from Pseudomonas putida KT2440. Proceedings of the National Academy of Sciences, 105, 11329–11334.

    Google Scholar 

  • Johnson, W. G., Lavy, T. L., & Gbur, E. E. (1995). Sorption, mobility and degradation of triclopyr and 2,4-D on four soils. Weed Science, 43(4), 678–684.

    CAS  Google Scholar 

  • Kaiser, J. P., & Bollag, J. M. (1991). Metabolism of pyridine and 3-hydroxypyridine under aerobic, denitrifying and sulfate-reducing conditions. Experientia, 47(3), 292–296. https://doi.org/10.1007/BF01958164.

    Article  CAS  Google Scholar 

  • Kaiser, J.-P., & Bollag, J.-M. (1992). Influence of soil inoculum and redox potential on the degradation of several pyridine derivatives. Soil Biology and Biochemistry, 24(4), 351–357. https://doi.org/10.1016/0038-0717(92)90195-4.

    Article  CAS  Google Scholar 

  • Kaiser, J.-P., Minard, R. D., & Bollag, J.-M. (1993). Transformation of 3- and 4-picoline under sulfate-reducing conditions. Applied and Environmental Microbiology, 59(3), 701–705.

    CAS  Google Scholar 

  • Kaiser, J. P., Feng, Y., & Bollag, J. M. (1996). Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiological Reviews, 60(3), 483–498.

    CAS  Google Scholar 

  • Kato, S., Kurata, T., & Fujimaki, M. (1973). Volatile compounds produced by the reaction of L-cysteine or L-cystine with carbonyl compounds. Agricultural and Biological Chemistry, 37(3), 539–544.

    CAS  Google Scholar 

  • Khasaeva, F., Vasilyuk, N., Terentyev, P., Troshina, M., & Lebedev, A. T. (2011). A novel soil bacterial strain degrading pyridines. Environmental Chemistry Letters, 9(3), 439–445. https://doi.org/10.1007/s10311-010-0299-6.

    Article  CAS  Google Scholar 

  • Kleinstein, A., & Webb, G. A. (1971). Spectroscopic, thermogravimetric and magnetic studies on some metal complexes with pyridine carboxylic acids. Journal of Inorganic and Nuclear Chemistry, 33(2), 405–412. https://doi.org/10.1016/0022-1902(71)80382-2.

    Article  CAS  Google Scholar 

  • Kolenbrander, P. E., & Weinberger, M. (1977). 2-Hydroxypyridine metabolism and pigment formation in three Arthrobacter species. Journal of Bacteriology, 132, 51–59.

    CAS  Google Scholar 

  • Kolenbrander, P. E., Lotong, N., & Ensign, J. C. (1976). Growth and pigment production by Arthrobacter pyridinolis n. sp. Archives of Microbiology, 110, 239–245.

    CAS  Google Scholar 

  • Koval’chukova, O. V., Strashnova, S. B., Zaitsev, B. E., & Vovk, T. V. (2002). Synthesis and physicochemical properties of some transition metal complexes with 3-hydroxypyridine. Russian Journal of Coordination Chemistry, 28(11), 767–770. https://doi.org/10.1023/A:1021150629958.

    Article  Google Scholar 

  • Kuhn, E. P., & Suflita, J. M. (1989). Microbial degradation of nitrogen, oxygen and sulfur heterocyclic compounds under anaerobic conditions: Studies with aquifer samples. Environmental Toxicology and Chemistry, 8, 1149–1158.

    CAS  Google Scholar 

  • Kuhn, R., Starr, M. P., Kuhn, D. A., Bauer, H., & Knackmuss, H. J. (1965). Indigoidine and other bacterial pigments related to 3,3′-bipyridyl. Archiv für Mikrobiologie, 51, 71–84.

    CAS  Google Scholar 

  • Kuo, C.-E., & Liu, S.-M. (1996). Biotransformation of pyridine and hydroxypyridine in anoxic estuarine sediments. Chemosphere, 33(5), 771–781. https://doi.org/10.1016/0045-6535(96)00232-9.

    Article  CAS  Google Scholar 

  • Laird, D. A., & Fleming, P. D. (1999). Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environmental Toxicology and Chemistry, 18(8), 1668–1672. https://doi.org/10.1002/etc.5620180809.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2008a). Multicomponent sorptive removal of toxics pyridine, 2-picoline, and 4-picoline from aqueous solution by bagasse fly ash: Optimization of process parameters. Industrial & Engineering Chemistry Research, 47(15), 5629–5635. https://doi.org/10.1021/ie0716161.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2008b). Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): Parametric, kinetic, equilibrium and thermodynamic aspects. Journal of Hazardous Materials, 154(1–3), 858–870. https://doi.org/10.1016/j.jhazmat.2007.10.111.

    Article  CAS  Google Scholar 

  • Lee, C. H., Oloffs, P. C., & Szeto, S. Y. (1986). Persistence, degradation, and movement of triclopyr and its ethylene glycol butyl ether ester in a forest soil. Journal of Agricultural and Food Chemistry, 34(6), 1075–1079.

    CAS  Google Scholar 

  • Lee, S.-T., Rhee, S.-K., & Lee, G. M. (1994). Biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Applied Microbiology and Biotechnology, 41(6), 652–657. https://doi.org/10.1007/bf00167280.

    Article  CAS  Google Scholar 

  • Lee, J. J., Rhee, S. K., & Lee, S. T. (2001). Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Applied and Environmental Microbiology, 67(9), 4342–4345. https://doi.org/10.1128/AEM.67.9.4342-4345.2001.

    Article  CAS  Google Scholar 

  • Lee, J. J., Yoon, J. H., Yang, S. Y., & Lee, S. T. (2006). Aerobic biodegradation of 4-methylpyridine and 4-ethylpyridine by newly isolated Pseudonocardia sp. strain M43. FEMS Microbiology Letters, 254(1), 95–100. https://doi.org/10.1111/j.1574-6968.2005.00019.x.

    Article  CAS  Google Scholar 

  • Leenheer, J. A., & Stuber, H. A. (1981). Migration through soil of organic solutes in an oil-shale process water. Environmental Science & Technology, 15(12), 1467–1475.

    CAS  Google Scholar 

  • Leenheer, J. A., Noyes, T. I., & Stuber, H. A. (1982). Determination of polar organic solutes in oil-shale retort water. Environmental Science & Technology, 16(10), 714–723.

    CAS  Google Scholar 

  • Lehmann, R. G., Miller, J. R., Olberding, E. L., Tillotson, P. M., & Laskowski, D. A. (1990). Fate of fluroxypyr in soil. Weed Research, 30(5), 375–382. https://doi.org/10.1111/j.1365-3180.1990.tb01724.x.

    Article  CAS  Google Scholar 

  • Leoni, V., D’Alessandro, L., Merolli, S., Hollick, C., & Collison, R. (1981). The soil degradation of chlorpyrifos and the significance of its presence in the superficial water in Italy. Agrochimica (Italy), 25, 414–426.

    CAS  Google Scholar 

  • Li, Y., Gu, G., Zhao, J., & Yu, H. (2001). Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochemistry, 37(1), 81–86. https://doi.org/10.1016/S0032-9592(01)00176-5.

    Article  CAS  Google Scholar 

  • Li, Y., Gu, G., Zhao, J., Yu, H., Qiu, Y., & Peng, Y. (2003). Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere, 52(6), 997–1005.

    CAS  Google Scholar 

  • Li, J., Cai, W., & Cai, J. (2009). The characteristics and mechanisms of pyridine biodegradation by Streptomyces sp. Journal of Hazardous Materials, 165(1–3), 950–954. https://doi.org/10.1016/j.jhazmat.2008.10.079.

    Article  CAS  Google Scholar 

  • Lien, Y., & Nawar, W. (1974). Thermal decomposition of some amino acids. Alanine and β-alanine. Journal of Food Science, 39(5), 914–916.

    CAS  Google Scholar 

  • Lin, Y.-f., Wu, Y.-p G., & Chang, C.-T. (2007). Combustion characteristics of waste-oil produced biodiesel/diesel fuel blends. Fuel, 86(12–13), 1772–1780.

    CAS  Google Scholar 

  • Lin, Q., Donghui, W., & Jianlong, W. (2010). Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon. Bioresource Technology, 101(14), 5229–5234. https://doi.org/10.1016/j.biortech.2010.02.059.

    Article  CAS  Google Scholar 

  • Liu, S.-M., & Kuo, C.-L. (1997). Anaerobic biotransformation of pyridine in estuarine sediments. Chemosphere, 35(10), 2255–2268. https://doi.org/10.1016/S0045-6535(97)00304-4.

    Article  CAS  Google Scholar 

  • Liu, S. M., Jones, W. J., & Rogers, J. E. (1994). Influence of redox potential on the anaerobic biotransformation of nitrogen-heterocyclic compounds in anoxic freshwater sediments. Applied Microbiology and Biotechnology, 41(6), 717–724. https://doi.org/10.1007/BF00167290.

    Article  Google Scholar 

  • Liu, S.-m., Wu, C.-H., & Huang, H.-J. (1998). Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions. Chemosphere, 36(10), 2345–2357. https://doi.org/10.1016/S0045-6535(97)10203-X.

    Article  CAS  Google Scholar 

  • Lodha, B., Bhadane, R., Patel, B., & Killedar, D. (2008). Biodegradation of pyridine by an isolated bacterial consortium/strain and bio-augmentation of strain into activated sludge to enhance pyridine biodegradation. Biodegradation, 19(5), 717–723. https://doi.org/10.1007/s10532-008-9176-4.

    Article  CAS  Google Scholar 

  • Loux, M. M., Liebl, R. A., & Slife, F. W. (1989). Adsorption of imazaquin and imazethapyr on soils, sediments, and selected adsorbents. Weed Science, 37(5), 712–718.

    CAS  Google Scholar 

  • Lym, R. G., & Messersmith, C. G. (1988). Survey for picloram in North Dakota groundwater. Weed Technology, 2(2), 217–222.

    Google Scholar 

  • Macauley, E., & Hong, A. (1995). Chelation extraction of lead from soil using pyridine-2,6-dicarboxylic acid. Journal of Hazardous Materials, 40(3), 257–270. https://doi.org/10.1016/0304-3894(94)00087-W.

    Article  CAS  Google Scholar 

  • MacDonald, G. E., HW, T., & Shilling, D. G. (1996). UV-B filtration to reduce photolysis of fluridone in experimental tanks. The Journal of Aquatic Plant Management, 34, 78–80.

    Google Scholar 

  • Maga, J. A. (1981). Pyridines in foods. Journal of Agricultural and Food Chemistry, 29(5), 895–898.

    CAS  Google Scholar 

  • Marquis, L. Y., Comes, R. D., & Yang, C. P. (1982). Degradation of fluridone in submersed soils under controlled laboratory conditions. Pesticide Biochemistry and Physiology, 17(1), 68–75.

    CAS  Google Scholar 

  • Mathur, A. K., & Majumder, C. B. (2008). Biofiltration of pyridine by Shewanella putrefaciens in a corn-cob packed biotrickling filter. CLEAN – Soil, Air, Water, 36(2), 180–186. https://doi.org/10.1002/clen.200700090.

    Article  CAS  Google Scholar 

  • Meikle, R., Youngson, C., Hedlund, R., Goring, C., & Addington, W. (1974). Decomposition of picloram by soil microorganisms: A proposed reaction sequence. Weed Science, 22(3), 263–268.

    CAS  Google Scholar 

  • Michaud, H. H., & Hoggard, P. E. (1988). Metal complexes of picloram. Journal of Agricultural and Food Chemistry, 36(1), 208–209.

    CAS  Google Scholar 

  • Mohan, S. V., Sistla, S., Guru, R. K., Prasad, K. K., Kumar, C. S., Ramakrishna, S. V., & Sarma, P. N. (2003). Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation. Waste Management, 23(2), 167–171. https://doi.org/10.1016/s0956-053x(02)00150-2.

    Article  CAS  Google Scholar 

  • Mohan, D., Singh, K. P., & Ghosh, D. (2005). Removal of α-picoline, β-picoline, and γ-picoline from synthetic wastewater using low cost activated carbons derived from coconut shell fibers. Environmental Science & Technology, 39(13), 5076–5086. https://doi.org/10.1021/es048282g.

    Article  CAS  Google Scholar 

  • Naik, M. N., Jackson, R. B., Stokes, J., & Swaby, R. J. (1972). Microbial degradation and phytotoxicity of picloram and other substituted pyridines. Soil Biology and Biochemistry, 4(3), 313–323. https://doi.org/10.1016/0038-0717(72)90027-2.

    Article  CAS  Google Scholar 

  • Nakai, M., Obata, M., Sekiguchi, F., Kato, M., Shiro, M., Ichimura, A., Kinoshita, I., Mikuriya, M., Inohara, T., Kawabe, K., Sakurai, H., Orvig, C., & Yano, S. (2004). Synthesis and insulinomimetic activities of novel mono- and tetranuclear oxovanadium(IV) complexes with 3-hydroxypyridine-2-carboxylic acid. Journal of Inorganic Biochemistry, 98(1), 105–112. https://doi.org/10.1016/j.jinorgbio.2003.09.005.

    Article  CAS  Google Scholar 

  • Nakai, M., Sekiguchi, F., Obata, M., Ohtsuki, C., Adachi, Y., Sakurai, H., Orvig, C., Rehder, D., & Yano, S. (2005). Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. Journal of Inorganic Biochemistry, 99(6), 1275–1282. https://doi.org/10.1016/j.jinorgbio.2005.02.026.

    Article  CAS  Google Scholar 

  • O’Loughlin, E. J., Sims, G. K., & Traina, S. J. (1999). Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation, 10(2), 93–104.

    Google Scholar 

  • O’Loughlin, E. J., Traina, S. J., & Sims, G. K. (2000). Effects of sorption on the biodegradation of 2-methylpyridine in aqueous suspensions of reference clay minerals. Environmental Toxicology and Chemistry, 19(9), 2168–2174.

    Google Scholar 

  • Occhipinti, G., Törnroos, K. W., & Jensen, V. R. (2017). Pyridine-stabilized fast-initiating ruthenium monothiolate catalysts for Z-selective olefin metathesis. Organometallics, 36(17), 3284–3292. https://doi.org/10.1021/acs.organomet.7b00441.

    Article  CAS  Google Scholar 

  • Padoley, K. V., Mudliar, S. N., & Pandey, R. A. (2009). Microbial degradation of pyridine and alpha-picoline using a strain of the genera Pseudomonas and Nocardia sp. Bioprocess and Biosystems Engineering, 32(4), 501–510. https://doi.org/10.1007/s00449-008-0270-0.

    Article  CAS  Google Scholar 

  • Pang, L., Close, M. E., Watt, J. P., & Vincent, K. W. (2000). Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. Journal of Contaminant Hydrology, 44(1), 19–46.

    CAS  Google Scholar 

  • Perchat, N., Saaidi, P. L., Darii, E., Pellé, C., Petit, J. L., Besnard-Gonnet, M., de Berardinis, V., Dupont, M., Gimbernat, A., Salanoubat, M., Fischer, C., & Perret, A. (2018). Elucidation of the trigonelline degradation pathway reveals previously undescribed enzymes and metabolites. Proceedings of the National Academy of Sciences of the United States of America, 115(19), E4358–E4367. https://doi.org/10.1073/pnas.1722368115.

    Article  CAS  Google Scholar 

  • Pereira, W. E., Rostad, C. E., Garbarino, J. R., & Hult, M. F. (1983). Groundwater contamination by organic bases derived from coal-tar wastes. Environmental Toxicology and Chemistry, 2(3), 283–294.

    CAS  Google Scholar 

  • Pereira, W. E., Rostad, C. E., Updegraff, D. M., & Bennett, J. L. (1987). Fate and movement of azaarenes and their anaerobic biotransformation products in an aquifer contaminated by wood-treatment chemicals. Environmental Toxicology and Chemistry, 6(3), 163–176.

    CAS  Google Scholar 

  • Petkevicius, V., Vaitekunas, J., Stankeviciute, J., Gasparaviciute, R., & Meskys, R. (2018). Catabolism of 2-hydroxypyridine by Burkholderia sp. Strain MAK1: A 2-hydroxypyridine 5-monooxygenase encoded by hpdABCDE catalyzes the first step of biodegradation. Applied and Environmental Microbiology, 84(11). https://doi.org/10.1128/AEM.00387-18.

  • Pizarro, P., Guillard, C., Perol, N., & Herrmann, J.-M. (2005). Photocatalytic degradation of imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts. Catalysis Today, 101(3–4), 211–218.

    CAS  Google Scholar 

  • Porfiri, C., Montoya, J. C., Koskinen, W. C., & Azcarate, M. P. (2015). Adsorption and transport of imazapyr through intact soil columns taken from two soils under two tillage systems. Geoderma, 251–252, 1–9. https://doi.org/10.1016/j.geoderma.2015.03.016.

    Article  CAS  Google Scholar 

  • Preuss, H. G., Echard, B., Perricone, N. V., Bagchi, D., Yasmin, T., & Stohs, S. J. (2008). Comparing metabolic effects of six different commercial trivalent chromium compounds. Journal of Inorganic Biochemistry, 102(11), 1986–1990. https://doi.org/10.1016/j.jinorgbio.2008.07.012.

    Article  CAS  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Naini, A. B., Jakowec, M., Petzinger, G., Miller, R., & Akram, M. (2001). The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): A technical review of its utility and safety. Journal of Neurochemistry, 76, 1265–1274. https://doi.org/10.1046/j.1471-4159.2001.00183.x.

    Article  CAS  Google Scholar 

  • Qiao, L., & Wang, J. L. (2010). Microbial degradation of pyridine by Paracoccus sp. isolated from contaminated soil. Journal of Hazardous Materials, 176(1–3), 220–225. https://doi.org/10.1016/j.jhazmat.2009.11.016.

    Article  CAS  Google Scholar 

  • Quivet, E., Faure, R., Georges, J., Païssé, J.-O., Herbreteau, B., & Lantéri, P. (2006). Photochemical degradation of imazamox in aqueous solution: Influence of metal ions and anionic species on the ultraviolet photolysis. Journal of Agricultural and Food Chemistry, 54(10), 3641–3645. https://doi.org/10.1021/jf060097u.

    Article  CAS  Google Scholar 

  • Rawajfih, Z., Mohammad, H. A., Nsour, N., & Ibrahim, K. (2010). Study of equilibrium and thermodynamic adsorption of α-picoline, β-picoline, and γ-picoline by Jordanian zeolites: Phillipsite and faujasite. Microporous and Mesoporous Materials, 132(3), 401–408. https://doi.org/10.1016/j.micromeso.2010.03.019.

    Article  CAS  Google Scholar 

  • Reddy, D., Pagadala, N., Kumar Reddy, H., Kishor Pb, K., & Reddy, G. (2008). Role of toluene dioxygenase in biodegradation of 2-picoline from Pseudomonas putida. A homology modeling and docking study. International Journal of Integrative Biology, 2(3), 157–165.

    CAS  Google Scholar 

  • Reddy, D., Debarthy, P., Kumar Reddy, H., & Reddy, G. (2009a). Characterization and identification of Bacillus cereus GMHS: An efficient 2- picoline degrading bacterium. International Journal of Integrative Biology, 5(3), 187–191.

    CAS  Google Scholar 

  • Reddy, D. M., Paul, D., Jogeswar, M., & Reddy, G. (2009b). Biodegradation of alpha picoline – A plasmid borne activity. International Journal of Environmental Studies, 66(6), 737–745. https://doi.org/10.1080/00207230903178030.

    Article  CAS  Google Scholar 

  • Redemann, C., & Youngson, C. (1968). The partial photolysis of 6-chloropicolinic acid in aqueous solution. Bulletin of Environmental Contamination and Toxicology, 3(2), 97–105.

    CAS  Google Scholar 

  • Reilly, T. J., Smalling, K. L., Orlando, J. L., & Kuivila, K. M. (2012). Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere, 89(3), 228–234. https://doi.org/10.1016/j.chemosphere.2012.04.023.

    Article  CAS  Google Scholar 

  • Rhee, S. K., Lee, G. M., Yoon, J. H., Park, Y. H., Bae, H. S., & Lee, S. T. (1997). Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Applied and Environmental Microbiology, 63(7), 2578–2585.

    CAS  Google Scholar 

  • Riley, R. G., Garland, T. R., Shiosaki, K., Mann, D. C., & Wildung, R. E. (1981). Alkylpyridines in surface waters, groundwaters, and subsoils of a drainage located adjacent to an oil shale facility. Environmental Science & Technology, 15(6), 697–701.

    CAS  Google Scholar 

  • Ronen, Z., & Bollag. J.-M. (1992). Rapid anaerobic mineralization of pyridine in a subsurface sediment inoculated with a pyridine-degrading Alcaligenes sp. Applied Microbiology and Biotechnology, 37 (2). https://doi.org/10.1007/BF00178182.

  • Ronen, Z., Horvath-Gordon, M., & Bollag, J. M. (1994). Biological and chemical mineralization of pyridine. Environmental Toxicology and Chemistry, 13(1), 21–26. https://doi.org/10.1002/etc.5620130105.

    Article  CAS  Google Scholar 

  • Ronen, Z., Bollag, J. M., Hsu, C. H., & Young, J. C. (1996). Feasibility of bioremediation of a ground water polluted with alkylpyridines. Groundwater, 34(2), 194–199.

    CAS  Google Scholar 

  • Sabah, E., & Celik, M. S. (2002). Interaction of pyridine derivatives with sepiolite. Journal of Colloid and Interface Science, 251(1), 33–38. https://doi.org/10.1006/jcis.2002.8394.

    Article  CAS  Google Scholar 

  • Sabry, S. A., El-Refai, A. H., & Gamati, S. Y. (1989). Production of riboflavin (Vitamin B2) by hydrocarbon-utilizing yeasts. Microbiologia SEM, 5, 45–52.

    CAS  Google Scholar 

  • Sakurai, H., Fujii, K., Watanabe, H., & Tamura, H. (1995). Orally active and long-term acting insulin-mimetic vanadyl complex: Bis(picolinato)oxovanadium (IV). Biochemical and Biophysical Research Communications, 214(3), 1095–1101. https://doi.org/10.1006/bbrc.1995.2398.

    Article  CAS  Google Scholar 

  • Schmeltz, I., & Hoffmann, D. (1977). Nitrogen-containing compounds in tobacco and tobacco smoke. Chemical Reviews, 77(3), 295–311.

    CAS  Google Scholar 

  • Schroeder, J., & Banks, P. A. (1986). Persistence and activity of norflurazon and fluridone in five Georgia soils under controlled conditions. Weed Science, 34(4), 599–606.

    CAS  Google Scholar 

  • Semenaite, R., Gasparaviciute, R., Duran, R., Precigou, S., Marcinkeviciene, L., Bachmatova, I., & Meskys, R. (2003). Genetic diversity if 2-hydroxypyridine-degrading soil bacteria. Biologija, 2, 27–30.

    Google Scholar 

  • Sharma, M. L., Kaul, S. M., & Shukla, O. P. (1984). Metabolism of 2-hydroxypyridine by Bacillus brevis (INA). Biological Membranes, 9, 43–52.

    CAS  Google Scholar 

  • Shen, J., Chen, Y., Wu, S., Wu, H., Liu, X., Sun, X., Li, J., & Wang, L. (2015). Enhanced pyridine biodegradation under anoxic condition: The key role of nitrate as the electron acceptor. Chemical Engineering Journal, 277, 140–149. https://doi.org/10.1016/j.cej.2015.04.109.

    Article  CAS  Google Scholar 

  • Shukla, O. P. (1973). Microbial decomposition of pyridine. Indian Journal of Experimental Biology, 11(5), 463–465.

    CAS  Google Scholar 

  • Shukla, O. P. (1974). Microbial decomposition of alpha-picoline. Indian Journal of Biochemistry & Biophysics, 11(3), 192–200.

    CAS  Google Scholar 

  • Shukla, O. P. (1975). Microbial decomposition of 2-ethylpyridine, 2,4-lutidine & 2,4,6-collidine. Indian Journal of Experimental Biology, 13, 574–575.

    CAS  Google Scholar 

  • Shukla, O. P., & Kaul, S. M. (1974). A constitutive pyridine degrading system in Corynebacterium sp. Indian Journal of Biochemistry & Biophysics, 11(3), 201–207.

    CAS  Google Scholar 

  • Shukla, O. P., & Kaul, S. M. (1975). Succinate semialdehyde, an intermediate in the degradation of pyridine by Brevibacterium sp. Indian Journal of Biochemistry & Biophysics, 12, 321–330.

    Google Scholar 

  • Shukla, O. P., & Kaul, S. M. (1986). Microbiological transformation of pyridine N-oxide and pyridine by Nocardia sp. Canadian Journal of Microbiology, 32, 330–341.

    CAS  Google Scholar 

  • Sims, G. K., & O’Loughlin, E. J. (1989). Degradation of pyridines in the environment. Critical Reviews in Environmental Control, 19(4), 309–340.

    CAS  Google Scholar 

  • Sims, G. K., & O’Loughlin, E. J. (1992). Riboflavin production during growth of Micrococcus luteus on pyridine. Applied and Environmental Microbiology, 58(10), 3423–3425.

    CAS  Google Scholar 

  • Sims, G. K., & Sommers, L. E. (1985). Degradation of pyridine derivatives in soil 1. Journal of Environmental Quality, 14(4), 580–584.

    CAS  Google Scholar 

  • Sims, G. K., & Sommers, L. E. (1986). Biodegradation of pyridine derivatives in soil suspensions. Environmental Toxicology and Chemistry, 5(6), 503–509.

    CAS  Google Scholar 

  • Sims, G. K., Sommers, L. E., & Konopka, A. (1986). Degradation of pyridine by Micrococcus luteus isolated from soil. Applied and Environmental Microbiology, 51(5), 963–968.

    CAS  Google Scholar 

  • Slade, P. (1965). Photochemical degradation of paraquat. Nature, 207(4996), 515.

    CAS  Google Scholar 

  • Slade, P., & Smith, A. (1967). Photochemical degradation of diquat. Nature, 213(5079), 919.

    CAS  Google Scholar 

  • Slieman, T. A., & Nicholson, W. L. (2001). Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Applied and Environmental Microbiology, 67(3), 1274–1279. https://doi.org/10.1128/AEM.67.3.1274-1279.2001.

    Article  CAS  Google Scholar 

  • Stadtman, E. R., Stadtman, T. C., Pastan, I., & Smith, L. D. (1972). Clostridium barkeri sp. n. Journal of Bacteriology, 110(2), 758–760.

    CAS  Google Scholar 

  • Stanislauskiene, R., Gasparaviciute, R., Vaitekunas, J., Meskiene, R., Rutkiene, R., Casaite, V., & Meskys, R. (2012). Construction of Escherichia coli-Arthrobacter-Rhodococcus shuttle vectors based on a cryptic plasmid from Arthrobacter rhombi and investigation of their application for functional screening. FEMS Microbiology Letters, 327(1), 78–86. https://doi.org/10.1111/j.1574-6968.2011.02462.x.

    Article  CAS  Google Scholar 

  • Stankeviciute, J., Vaitekunas, J., Petkevicius, V., Gasparaviciute, R., Tauraite, D., & Meskys, R. (2016). Oxyfunctionalization of pyridine derivatives using whole cells of Burkholderia sp. MAK1. Scientific Reports, 6, 39129. https://doi.org/10.1038/srep39129.

    Article  CAS  Google Scholar 

  • Starr, R. I., & Cunningham, D. J. (1975). Leaching and degradation of 4-aminopyridine-14C in several soil systems. Archives of Environmental Contamination and Toxicology, 3(1), 72–83.

    CAS  Google Scholar 

  • Stobdan, T., Sinha, A., Singh, R. P., & Adhikari, D. K. (2008). Degradation of pyridine and 4-methylpyridine by Gordonia terrea IIPN1. Biodegradation, 19(4), 481–487. https://doi.org/10.1007/s10532-007-9152-4.

    Article  CAS  Google Scholar 

  • Stougaard, R. N., Shea, P. J., & Martin, A. R. (1990). Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr. Weed Science, 38, 67–73.

    CAS  Google Scholar 

  • Stuermer, D. H., Ng, D. J., & Morris, C. J. (1982). Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. Environmental Science & Technology, 16(9), 582–587.

    CAS  Google Scholar 

  • Sudasinghe, N., Dungan, B., Lammers, P., Albrecht, K., Elliott, D., Hallen, R., & Schaub, T. (2014). High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel, 119, 47–56. https://doi.org/10.1016/j.fuel.2013.11.019.

    Article  CAS  Google Scholar 

  • Sun, J.-Q., Xu, L., Tang, Y.-Q., Chen, F.-M., Liu, W.-Q., & Wu, X.-L. (2011). Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol. Journal of Hazardous Materials, 191(1), 62–68. https://doi.org/10.1016/j.jhazmat.2011.04.034.

    Article  CAS  Google Scholar 

  • Sun, J. Q., Xu, L., Tang, Y. Q., Chen, F. M., Zhao, J. J., & Wu, X. L. (2014). Bacterial pyridine hydroxylation is ubiquitous in environment. Applied Microbiology and Biotechnology, 98(1), 455–464. https://doi.org/10.1007/s00253-013-4818-9.

    Article  CAS  Google Scholar 

  • Suyama, K., & Adachi, S. (1980). Origin of alkyl-substituted pyridines in food flavor: Formation of the pyridines from the reaction of alkanals with amino acids. Journal of Agricultural and Food Chemistry, 28(3), 546–549.

    CAS  Google Scholar 

  • Tang, H., Yao, Y., Wang, L., Yu, H., Ren, Y., Wu, G., & Xu, P. (2012). Genomic analysis of Pseudomonas putida: Genes in a genome island are crucial for nicotine degradation. Scientific Reports, 2, 377. https://doi.org/10.1038/srep00377.

    Article  CAS  Google Scholar 

  • Thompson, K., & Orvig, C. (2001). Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coordination Chemistry Reviews, 219(221), 1033–1053. https://doi.org/10.1016/S0010-8545(01)00395-2.

    Article  Google Scholar 

  • Udenfriend, S., Clark, C. T., Axelrod, J., & Brodie, B. B. (1954). Ascorbic acid in aromatic hydroxylation. The Journal of Biological Chemistry, 208, 731–738.

    CAS  Google Scholar 

  • Ulen, B. M., Larsbo, M., Kreuger, J. K., & Svanback, A. (2014). Spatial variation in herbicide leaching from a marine clay soil via subsurface drains. Pest Management Science, 70(3), 405–414. https://doi.org/10.1002/ps.3574.

    Article  CAS  Google Scholar 

  • Vaitekunas, J., Gasparaviciute, R., Rutkiene, R., Tauraite, D., & Meskys, R. (2016). A 2-hydroxypyridine catabolism pathway in Rhodococcus rhodochrous strain PY11. Applied and Environmental Microbiology, 82(4), 1264–1273. https://doi.org/10.1128/AEM.02975-15.

    Article  CAS  Google Scholar 

  • Vasudevan, D., Dorley, P. J., & Zhuang, X. (2001). Adsorption of hydroxy pyridines and quinolines at the metal oxide−water interface: Role of tautomeric equilibrium. Environmental Science & Technology, 35(10), 2006–2013. https://doi.org/10.1021/es0017054.

    Article  CAS  Google Scholar 

  • Vela, N., Perez-Lucas, G., Navarro, M. J., Garrido, I., Fenoll, J., & Navarro, S. (2017). Evaluation of the leaching potential of anthranilamide insecticides through the soil. Bulletin of Environmental Contamination and Toxicology, 99(4), 465–469. https://doi.org/10.1007/s00128-017-2155-x.

    Article  CAS  Google Scholar 

  • Verdía, P., González, E. J., Rodríguez-Cabo, B., & Tojo, E. (2011). Synthesis and characterization of new polysubstituted pyridinium-based ionic liquids: Application as solvents on desulfurization of fuel oils. Green Chemistry, 13(10), 2768–2776.

    Google Scholar 

  • Wang, J., Jiang, X., Liu, X., Sun, X., Han, W., Li, J., Wang, L., & Shen, J. (2018). Microbial degradation mechanism of pyridine by Paracoccus sp. NJUST30 newly isolated from aerobic granules. Chemical Engineering Journal, 344, 86–94. https://doi.org/10.1016/j.cej.2018.03.059.

    Article  CAS  Google Scholar 

  • Watson, G. K., & Cain, R. B. (1975). Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. The Biochemical Journal, 146(1), 157–172. https://doi.org/10.1042/bj1460157.

    Article  CAS  Google Scholar 

  • Watson, G. K., Houghton, C., & Cain, R. B. (1974a). Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine-3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine 3-hydroxylase. Biochemical Journal, 140(2), 265–276. https://doi.org/10.1042/bj1400265.

    Article  CAS  Google Scholar 

  • Watson, G. K., Houghton, C., & Cain, R. B. (1974b). Microbial metabolism of the pyridine ring. The metabolism of pyridine-3,4-diol (3,4-dihydroxypyridine) by Agrobacterium sp. The Biochemical Journal, 140(2), 277–292.

    CAS  Google Scholar 

  • Weast, R. C., Astle, M. J., & Beyer, W. H. (1989). CRC handbook of chemistry and physics (Vol. 1990). Boca Raton: CRC Press.

    Google Scholar 

  • Westheimer, F., & Chang, Y. (1959). Pyridine catalysis of the oxidation of isopropyl alcohol by chromic acid. The Journal of Physical Chemistry, 63(3), 438–439.

    CAS  Google Scholar 

  • Willsky, G. R., Chi, L. H., Godzala, M., 3rd, Kostyniak, P. J., Smee, J. J., Trujillo, A. M., Alfano, J. A., Ding, W., Hu, Z., & Crans, D. C. (2011). Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coordination Chemistry Reviews, 255(19–20), 2258–2269. https://doi.org/10.1016/j.ccr.2011.06.015.

    Article  CAS  Google Scholar 

  • Wolt, J. D. (2000). Nitrapyrin behavior in soils and environmental considerations. Journal of Environmental Quality, 29(2), 367–379. https://doi.org/10.2134/jeq2000.00472425002900020002x.

    Article  CAS  Google Scholar 

  • Wu, X., Hua, R., Tang, F., Li, X., Cao, H., & Yue, Y. (2006). Photochemical degradation of chlorpyrifos in water. Ying yong sheng tai xue bao/The Journal of Applied Ecology, 17(7), 1301–1304.

    CAS  Google Scholar 

  • Yang, J., Hong, L., Liu, Y.-H., Guo, J.-W., & Lin, L.-F. (2014). Treatment of oilfield fracturing wastewater by a sequential combination of flocculation, Fenton oxidation and SBR process. Environmental Technology, 35(22), 2878–2884. https://doi.org/10.1080/09593330.2014.924570.

    Article  CAS  Google Scholar 

  • Yang, C., Tang, Y., Xu, H., Yan, N., Li, N., Zhang, Y., & Rittmann, B. E. (2018). Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine. Biodegradation, 29(5), 419–427. https://doi.org/10.1007/s10532-018-9834-0.

    Article  CAS  Google Scholar 

  • Yoon, J. H., Kang, S. S., Cho, Y. G., Lee, S. T., Kho, Y. H., Kim, C. J., & Park, Y. H. (2000a). Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 50(Pt 6), 2173–2180. https://doi.org/10.1099/00207713-50-6-2173.

    Article  CAS  Google Scholar 

  • Yoon, J. H., Lee, J. J., Kang, S. S., Takeuchi, M., Shin, Y. K., Lee, S. T., Kang, K. H., & Park, Y. H. (2000b). Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. International Journal of Systematic and Evolutionary Microbiology, 50(Pt 3), 1203–1210. https://doi.org/10.1099/00207713-50-3-1203.

    Article  CAS  Google Scholar 

  • Yu, H., Tang, H., Zhu, X., Li, Y., & Xu, P. (2015). Molecular mechanism of nicotine degradation by a newly isolated strain, Ochrobactrum sp. strain SJY1. Applied and Environmental Microbiology, 81(1), 272–281. https://doi.org/10.1128/AEM.02265-14.

    Article  CAS  Google Scholar 

  • Yuen, G., Heaster, H., & Hoggard, P. E. (1983). Amine spectrochemical properties in tris (aminocarboxylate) complexes of chromium (III). Inorganica Chimica Acta, 73, 231–234.

    CAS  Google Scholar 

  • Zachara, J. M., Ainsworth, C. C., Cowan, C. E., & Thomas, B. L. (1987). Sorption of binary mixtures of aromatic nitrogen heterocyclic compounds on subsurface materials. Environmental Science & Technology, 21(4), 397–402. https://doi.org/10.1021/es00158a010.

    Article  CAS  Google Scholar 

  • Zachara, J. M., Ainsworth, C. C., & Smith, S. C. (1990). The sorption of N-heterocyclic compounds on reference and subsurface smectite clay isolates. Journal of Contaminant Hydrology, 6(3), 281–305. https://doi.org/10.1016/0169-7722(90)90022-9.

    Article  CAS  Google Scholar 

  • Zamfirescu, D., & Grathwohl, P. (2001). Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site. Journal of Contaminant Hydrology, 53(3), 407–427. https://doi.org/10.1016/S0169-7722(01)00176-0.

    Article  CAS  Google Scholar 

  • Zefirov, N. S., Modyanova, L. V., Ouyuntsetseg, A., Piskunkova, N. F., Terentiev, P. B., Vagrov, V. V., & Ovcharenko, V. V. (1993). Transformation of 3-hydroxypyridine by Pseudomonasfluorescens and Rhodococcus opacus strains. Chemistry of Heterocyclic Compounds, 29(6), 730–731.

    Google Scholar 

  • Zefirov, N. S., Agapova, S. R., Terentiev, P. B., Bulakhova, I. M., Vasyukova, N. I., & Modyanova, L. V. (1994). Degradation of pyridine by Arthrobacter crystallopoietes and Rhodococcus opacus strains. FEMS Microbiology Letters, 118(1), 71–74.

    CAS  Google Scholar 

  • Zhang, C., Li, M., Liu, G., Luo, H., & Zhang, R. (2009). Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials, 172(1), 465–471.

    CAS  Google Scholar 

  • Zhu, S., Bell, P. R. F., & Greenfield, P. F. (1988). Adsorption of pyridine onto spent Rundle oil shale in dilute aqueous solution. Water Research, 22(10), 1331–1337. https://doi.org/10.1016/0043-1354(88)90122-4.

    Article  CAS  Google Scholar 

  • Zhu, D., Herbert, B. E., & Schlautman, M. A. (2003). Sorption of pyridine to suspended soil particles studied by deuterium nuclear magnetic resonance. Soil Science Society of America Journal, 67(5), 1370–1377. https://doi.org/10.2136/sssaj2003.1370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald K. Sims .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, N., O’Loughlin, E.J., Sims, G.K. (2019). Microbial Degradation of Pyridine and Pyridine Derivatives. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_1

Download citation

Publish with us

Policies and ethics