Skip to main content

Pesticide Residues in the Soil Cause Cross-Resistance Among Soil Bacteria

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

Multi-drug resistance among bacterial pathogens remains a serious problem worldwide. There is no clear and complete understanding about the multi-drug resistance mechanism even though the field is attaining continuous growth. Indiscriminate use of pesticides enabling the bacterial population to acquire multidrug resistance has been revived in this paper. Pesticide residues impose a bacterial system adopted for the stress due to the presence of xenobiotics. The natural evolutionary mutation mechanisms occurring randomly in the core gene sequences responsible for catabolizing complex substrates are the major reasons behind microbial resistance. Mutated gene products produced pose lesser substrate specificity than a wild enzyme. Organophosphorus hydrolase (OPH) or formaldehyde dehydrogenase and laccase are the few enzymes able to degrade many other similar xenobiotics. It has been extrapolated that degradation of many antibiotics by organophosphorus hydrolase is a kind of nonspecific degradation. Organisms growing in metal-polluted sites produce enzymes with different metal ions in their binding sites differing in specificity and conferring cross-resistance to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Hadar Y (1998) Oxidative biodegradation of phosphorothioates by fungal laccase. FEBS Lett 438(3):195–200

    Article  CAS  PubMed  Google Scholar 

  • Anjum R, Krakat N (2015) Improper antibiotic utilization evokes the dissemination of resistance in biotic environments-a high risk of health hazards. Pharm Anal Acta 6:12. http://dx.doi.org/10.4 172/2153-2435.1000454

  • Anjum R, Krakat N (2016) Detection of multiple resistances, biofilm formation and conjugative transfer of Bacillus cereus from contaminated soils. Curr Microbiol 72(3):321–328

    CAS  PubMed  Google Scholar 

  • Bainy ACD (2000) Biochemical responses in penaeids caused by contaminants. Aquaculture 191:163–168. https://doi.org/10.1016/S0044-8486(00)00432-4

    Article  CAS  Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67:886–890

    Article  CAS  PubMed  Google Scholar 

  • Beigel C, Di Pietro L (1999) Transport of triticonazole in homogeneous soil columns influence of non equilibrium sorption. Soil Sci Soc Am J 63:1077–1086

    Article  CAS  Google Scholar 

  • Benitez J, Beltran-Heredia J, Gonzalez T, Real F (1995) Photooxidation of carbofuran by a polychromatic UV irradiation without and with hydrogen peroxide. Ind Eng Chem Res 34(11):4099–4105

    Article  CAS  Google Scholar 

  • Benning MM, Sims H, Raushel FM, Holden HM (2001) High-resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemist 40:2712–2722

    Article  CAS  Google Scholar 

  • Bergman J (2003) Does the acquisition of antibiotic and pesticide resistance provide evidence for evolution? J Creat 17:26–32

    Google Scholar 

  • Bertrand ND, Barcelo D, Legrini O, Oliveros E, Braun AM (1991) Photodegradation of the carbamate pesticides aldicarb, carbaryl and carbofuran in water. Anal Chim Photochem Process Acta 254:235–244

    Article  Google Scholar 

  • Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Bioremediation of an industrial effluent containing monocrotophos. Curr Microbiol 45:346–349

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao ST, Puranik RP (2009) Microbial degradation of monocrotophos by Aspergillus oryzae. Int Biodeterior Biodegradation 63:503–508

    Article  CAS  Google Scholar 

  • Blatchley ER, Do-Quang Z, Janex ML, Laıne JM (1998) Process modeling of ultraviolet disinfection. Water Sci Technol 38(6):63–69

    Article  CAS  Google Scholar 

  • Chen CC, Huang C, Wu MT, Chou CH, Huang CC, Tseng TY, Chang FY, Li YT, Tsai CC, Wang TS, Wong RH (2014) Multidrug resistance gene variants, pesticide exposure, and increased risk of DNA damage. BioMed Res Int 965729:01–09. https://doi.org/10.1155/2014/965729

    Google Scholar 

  • Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59(9):3138–3140

    Google Scholar 

  • Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62(5):1636–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Liu L, Wang B, Wu J, DeFrank JJ, Anderson DM, Rastogi VK, Hamilton AB (1997) Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J Ind Microbiol Biotechnol 18(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Cofie O, Veenhuizen RV, Drechsel P (2003) Contribution of urban and Peri-urban agriculture to food security in sub-Saharan Africa. Africa session of 3rd WWF, Kyoto

    Google Scholar 

  • Cynthia JB, Muller JG (1998) Oxidative nucleobase modifications leading to strand scission. Chem Rev 98(3):1109–1152

    Article  Google Scholar 

  • Daniel H (1991) Out of the earth: civilization and the life of the soil. Free Press, New York

    Google Scholar 

  • DeFrank JJ, White WE (2002) Phosphofluoridates: biological activity and biodegradation. Handbook Environ Chem 10:295–343

    Article  Google Scholar 

  • Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941

    Article  CAS  PubMed  Google Scholar 

  • DiSioudi BD, Miller CE, Lai KH, Gimsley JK, Wild JR (1999) Rational design of organophosphorus hydrolase for altered substrate specificities. Chem Biol Interact 120:211–223

    Article  Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665

    CAS  PubMed  Google Scholar 

  • Eerd LLV, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51(4):472–495

    Article  Google Scholar 

  • Efrmenko EN, Sergeeva VS (2001) Organophosphate hydrolase – an enzyme catalyzing the degradation of phosphorus-containing toxins and pesticides. Russ Chem Bull (Int Ed) 50:1826–1832

    Article  Google Scholar 

  • Gerlt JA, Raushel FM (2003) Evolution of function in (b/a) 8- barrel enzymes. Curr Opini Chem Biol 7:252–264

    Article  CAS  Google Scholar 

  • Gonzalez-Lopez J, Martinez-Toledo MV, Rodelas B, Salmeron V (1993) Studies on the effects of the insecticides phorate and malathion on soil microorganisms. Environ Toxicol Chem 12:1209–1214

    Article  CAS  Google Scholar 

  • Grover R, Cessna AJ (1991) Environmental chemistry of herbicides, insecticides, and fungicides. CRC Press, Boca Raton

    Google Scholar 

  • Gundi VA, Reddy BR (2006) Degradation of monocrotophos in soils. Chemosphere 62(3):396–403

    Article  CAS  PubMed  Google Scholar 

  • Hausinger RP, Fukumori F (1995) Characterization of the first enzyme in 2, 4-dichlorophenoxyacetic acid metabolism. Environ Health Perspect 103(5):37–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann J (2000) Do antibiotics maintain antibiotic resistance. Drug Discov Today 5:195–204

    Article  CAS  PubMed  Google Scholar 

  • Henry LM, Maiden MC, Ferrari J, Godfray HCJ (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525

    Article  PubMed  Google Scholar 

  • Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolase related to urease. Proteins 28:72–82

    Article  CAS  PubMed  Google Scholar 

  • Horne I, Harcourt RL, Sutherland TD, Russell RJ, Oakeshott JG (2002) Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol Lett 206:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kazanjian P, Wendy A, Hossler PA, Burman W, Richardson J, Lee CH, Lawrence C, Katz J, Meshnick SR (2000) Pneumocystis carinii mutations are associated with duration of sulfa or sulfone prophylaxis exposure in AIDS patients. J Infect Dis 182(2):551–557. https://doi.org/10.1086/315719

    Article  CAS  PubMed  Google Scholar 

  • Kirubakaran R, Murugan A, Natarajan D, Parray JA (2017a) Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathogenesis 105:153–165

    Article  CAS  Google Scholar 

  • Kirubakaran R, Murugan A, Chinnathambi P, Parray JA (2017b) Influence of residual pesticide on plant growth promoting bacteria isolated from agriculture field. J Basic Appl Plant Sci 1(2):110

    Google Scholar 

  • Kirubakaran R, Murugan A, Natarajan D, Parray JA, Gopinath S, Aruljothi KN, Nowsheen S, Abdulaziz AA, Abeer H, Elsayed FA (2018a) Pesticide-degrading, naturally multidrug-resistant bacteria flora. Microb Pathogenesis 114:304–310

    Article  CAS  Google Scholar 

  • Kirubakaran R, Murugan A, Natarajan D, Parray JA, Shameem N, Aruljothi KN, Hashem A, Alqarawi AA, Abd_Allah EF (2018b) Cloning and expression of the organophosphate pesticide-degrading 𝛼-𝛽 hydrolase gene in plasmid pMK-07 to confer cross-resistance to antibiotics. Biomed Res Int 2018:1535209. https://doi.org/10.1155/2018/1535209

    Article  CAS  Google Scholar 

  • Kopf G, Schwack W (1995) Photodegradation of the carbamate insecticide ethiofencarb. J Pest Sci 43:303–309

    Article  CAS  Google Scholar 

  • Kruger M, Schledorn P, Schrodl W, Hoppe H, Walburga L, Shehata AA (2014) Detection of glyphosate residues in animals and humans. J Environ Anal Toxicol 4:1–5

    Article  Google Scholar 

  • Kurenbach B, Marjoshi D, Amabile-Cuevas CF, Ferguson GC, Godsoe W, Gibson P, Heinemann JA (2015) Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella entericaserovar, Typhimurium. MBio 6(2):e00009–e00015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lan WS, Gu JD, Zhang JL, Shen BC, Jiang H, Mulchandani A, Chen W, Qiao CL (2006) Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int Biodeterior Biodegradation 58:70–76

    Article  CAS  Google Scholar 

  • Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu T, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158(5):1733–1740

    Article  CAS  PubMed  Google Scholar 

  • Liu YH, Liu Y, Chen ZS, Lian J, Huang X, Chung YC (2004) Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP303. Enzym Microb Technol 34(3):297–303

    Article  CAS  Google Scholar 

  • Liu GQ, Zhang G, Li J, Qi SH (2008) Source and distribution characteristic of atmospheric organochlorine pesticides in the Pearl River estuary and the adjacent South China Sea. Environ Sci 29(12):3320–3325

    CAS  Google Scholar 

  • Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Phys 120:43–49

    Article  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marc R, James U (2005) Rhodococcus phenolics sp. a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene, and phenol as sole carbon sources. Syst Appl Microbiol 28(8):695–701

    Article  CAS  Google Scholar 

  • Meallier P, Momouni A, Mansour M (1994) Photodegradation des molecules phytosanitary. VII. Photodegradation du carbetamide soul et en presence d’ajuvants de formulation, Chemosphere 20(46):267–273

    Google Scholar 

  • Mulbry WW (1992) The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1: cloning, sequencing and expression in Escherichia coli. Gene 121(1):149–153

    Article  CAS  PubMed  Google Scholar 

  • Mulbry WW, Karns JS (1989) Purification and characterization of three parathion hydrolase from gram-negative bacterial strains. Appl Environ Microbiol 55:289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nyle BC, Ray WR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Omburo GA, Kuo JM, Mullins LS, Raushel FM (1992) Characterization of zinc binding site of bacterial phosphotriesterase. Comput Biol Chem 267:13278–13283

    CAS  Google Scholar 

  • Ortiz-Hernandez ML, Sanchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Revista Internacional de Contaminacion Ambiental 26:27–38

    Google Scholar 

  • Orzech KM, Nichter M (2008) From resilience to resistance: political ecological lessons from antibiotic and pesticide resistance. Annu Rev Anthropol 37:267–282

    Article  Google Scholar 

  • Pandit NP, Ahmad N, Maheshwari SK (2012) Vermicomposting biotechnology: an eco-loving approach for recycling of solid organic wastes into valuable biofertilizers. J Agric Sci Food Res 2:113

    Google Scholar 

  • Prammer B (1998) Directive 98/83/CE relative to the quality of waters for human use. Official Bulletin of the EC, European Union, Clavijo, Study of photodegradation of the pesticide ethiofencarb in Brussels:32–54

    Google Scholar 

  • Quin LD (2000) A guide to organophosphorus chemistry. Wiley. ISBN 0-471-31824-8

    Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Rev Environ Contamin Toxicol 211:63–120

    CAS  Google Scholar 

  • Rangaswamy V, Venkateswarlu K (1992) Degradation of selected insecticides by bacteria isolated from soil. Bull Environ Contam Toxicol 49(6):797–804

    Article  CAS  PubMed  Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5:288–295

    Article  CAS  PubMed  Google Scholar 

  • Riya P, Jagapati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2:36–41

    Article  CAS  Google Scholar 

  • Ruifu Z, Zhongli C, Jiandong J, Jian H, Xiangyan G, Shunpeng L (2005) Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51:337–343. https://doi.org/10.1139/w05

    Article  Google Scholar 

  • Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites, and human health. Curr Opin Microbiol 16:246–254

    Article  CAS  PubMed  Google Scholar 

  • Sander P, Wittich RM, Fortnagel P, Wilkes H, Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5- tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57:1430–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvapandiyan A, Bhatnagar RK (1994) Isolation of a glyphosate-metabolizing Pseudomonas: detection, partial purification and localization of carbon-phosphorus lyase. Appl Microbiol Biotechnol 40:876–882

    Article  CAS  Google Scholar 

  • Seo JS, Keum YS, Harada RM, Li QX (2007) Isolation and cauterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from the PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389

    Article  CAS  PubMed  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiani S, Malik A (2003) Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater-irrigated soil. World J Microbiol Biotechnol 19:897–901

    Article  CAS  Google Scholar 

  • Shah BP, Devkota B (2009) Obsolete pesticides: their environmental and human health hazards. J Agric Environ 10:51–56

    Article  Google Scholar 

  • Shim H, Hong SB, Raushel FM (1998) Hydrolysis of phosphodiesters through the transformation of the bacterial phosphotriesterase. J Biol Chem 272:17445–17450

    Article  Google Scholar 

  • Singh S, Singh DK (2003) Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense sub sp. inisidiosum SBL. Can J Microbiol 49:101–109

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wrigh DJ (2003) Role of soil pH in the development of enhanced biodegradation of fenamiphos. Appl Environ Microbiol 69:7035–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson PC, Isman MB, Steven R (2017) Belmain Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crops Prod 110(30):2–9

    Article  Google Scholar 

  • Tomlin C (1995) The pesticide manual, 10th edn. British Crop Protection Council and the Royal Society of Chemistry

    Google Scholar 

  • Tu H, Frederic-Silvestre YZ, Nguyen-Thanh PZ, Patrick K (2010) Effects of pesticides and antibiotics on Penaeid shrimp with special emphases on behavioral and biomarker responses. Environ Toxicol Chem 29:929–938

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (2005) Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity for information disseminated by the Environmental Protection Agency. Office of Environmental Information, Washington, DC. EPA/630/P-03/001F

    Google Scholar 

  • Vig K, Singh DK, Agarwal HC, Dhawan AK, Dureja P (2001) Insecticide residues in cotton crop soil. J Environ Sci Health B 36:421–434

    Article  CAS  PubMed  Google Scholar 

  • Waili NA, Salom K, Ghamdi AA, Ansari MJ (2012) Antibiotic, Pesticide and microbial contaminants of honey: Human health hazards. Sci World J:01–09

    Google Scholar 

  • Walker A, Roberts SJ (1993) Degradation, biodegradation, and enhanced biodegradation. In: Proceedings of 9th Symposium Pesticide chemistry: the chemistry, mobility, and degradation of xenobiotics, Piacenza, Italy

    Google Scholar 

  • Yadav S, Kumar S, Hotam V, Chaudhary S (2015) Isolation and characterization of organophosphate pesticides degrading bacteria from contaminated agricultural soil. Onl J Biol Sci 15:113–125

    Article  CAS  Google Scholar 

  • Yang H, Carr PD, McLoughlin SY, Liu LW, Horne I, Qui X, Jeffries CM, Russell RJ, Oakeshott JG, Ollis DL (2003) Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng 16:135–145

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Cui Z, Jiang J, Gu X, Li S (2005) Diversity of organophosphorus pesticides degrading bacteria in a polluted soil and conversation of their organophosphorus hydrolase genes. Can J Microbiol 5:337–343

    Article  Google Scholar 

Download references

Acknowledgments

All authors acknowledge the Periyar University, Salem, Tamil Nadu, India, for a University Research Fellowship (ref. no PU/A&A-3/URF/2015) and DST-FIST (grant no. SR/FST/LSI-640/2015(c)).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirubakaran, R., Murugan, A., Shameem, N., Parray, J.A. (2019). Pesticide Residues in the Soil Cause Cross-Resistance Among Soil Bacteria. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_11

Download citation

Publish with us

Policies and ethics