Skip to main content

Prediction of Local Microstructure and Mechanical Properties of Welded Joint Metal with Allowance for Its Thermal Cycle

  • Chapter
  • First Online:
Thermal Processes in Welding

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The behaviour of a welded joint under external conditions (load, temperature, hostile environment, etc.) depends on the local microstructure and local mechanical properties of all welded joint zones (of the weld, HAZ and base metal). In order to predict the microstructure and properties, it is necessary to know the thermal processes in the welded joint, i.e. to solve the heat conduction problem with allowance for body geometry, boundary conditions, welding conditions, and the thermophysical properties of the metal (Fig. 13.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, C. (1958). Cooling rates and peak temperatures in fusion welding. Welding Journal, 37(5), 210-s–215-s.

    Google Scholar 

  • Berkhout, C. F., & van Lent, P. H. (1968). Anwendung von Spitzentemperatur-Abkuhlzeit (STAZ)-Schaubildern beim Schweissen hochfester Stahle. Schweissen und Schneiden, 6, 256–260 (in German).

    Google Scholar 

  • Buchmayr, B. (1991). Computer in der Werkstoff – und Schweisstechnik. Anwendung von mathematischen Modellen (436 pp.). Duesseldorf: DVS – Verlag (in German).

    Google Scholar 

  • Buchmayr, B., & Cerjak, H. (1988). Mathematical description of HAZ behaviour of low-alloyed structural steels. In Proceedings of the International Conference on Improved Weldment Control with Special Reference to Computer Technology (pp. 43–51). Vienna.

    Google Scholar 

  • Degenkoble, J., Uwer, D., & Wegmann, H. (1984). Characterisation of weld thermal cycles with regard to their effect on the mechanical properties of weld joints by the cooling time t8/5 and its determination (17 pp.). IIW Doc. IX-1336-84.

    Google Scholar 

  • Devillers, L., Kaplan, D., & Testard, P. (1995). Predicting the microstructures and toughness of weld HAZs. Welding International, 9(2), 128–138.

    Google Scholar 

  • Frolov, V. V. (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian).

    Google Scholar 

  • Gliha, V. (2005). The microstructure and properties of materials at the fusion line. Metalurgija, 44(1), 13–18.

    Google Scholar 

  • Grong, O. (1994). Metallurgical modelling of welding (581 pp.). London: The Institute of Materials.

    Google Scholar 

  • Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., & Karimi J. (2013a). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application, 18–21 September 2013, (pp. 38–45). St. Petersburg, Russia: St. Petersburg Polytechnic University Publishing.

    Google Scholar 

  • Karkhin, V. A., Khomich, P. N., Ivanov, S. Yu., Michailov, V. G., & Kah, P. (2013b). Prediction of the microstructure and mechanical properties of metal in welded joints with consideration for real weld geometry. International Institute of Welding. IIW RD305. Rev 3-3/7 (7 pp.).

    Google Scholar 

  • Karkhin, V. A., Khomich, P. N., Ivanov, S. Yu., & Martikainen, J. (2015a). Prediction of microstructure and mechanical properties of heat affected zone in hybrid laser-arc welding. Welding and Diagnostics, 3, 9–12 (in Russian).

    Google Scholar 

  • Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., Michailov, V. G., & Panchenko, O. V. (2015b). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. Advanced Materials Research, 1120–1121, 1292–1296.

    Google Scholar 

  • Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)” (pp. 162–166). Kiev.

    Google Scholar 

  • Karkhin, V. A., Mnushkin, O. S., & Petrov, G. L. (1978). An approximate calculation of hydrogen redistribution in welded joints. In Proceedings of Leningrad Polytechnic Institute, No. 364 “Welding Production” (pp. 3–8) (in Russian).

    Google Scholar 

  • Karkhin, V. A., & Okhapkin, K. A. (2011). Evaluation of the equivalent time of non-isothermal diffusion processes in the heat-affected zone in fusion welding. Welding International, 25(8), 629–632.

    Google Scholar 

  • Kasatkin, O. G. (1984a). Dependence of ultimate strength and true rupture strength of weld metal on alloying and welding thermal cycle. Automatic Welding, 9, 1–5 (in Russian).

    Google Scholar 

  • Kasatkin, O. G. (1984b). Dependence of yield strength of weld metal on concentration of alloying elements. Automatic Welding, 8, 11–12 (in Russian).

    Google Scholar 

  • Kasatkin, O. G. (1984c). Interpolation models for evaluation of phase composition in arc welding of low-alloyed steels. Automatic Welding, 1, 7–11 (in Russian).

    Google Scholar 

  • Kasatkin, O. G. (1985). Calculation of weld metal resistance to fatigue crack propagation. Automatic Welding, 12, 1–4 (in Russian).

    Google Scholar 

  • Kasatkin, O. G. (1990). Mathematical modelling of composition-property relationships for welded joints and development of calculation-experimental system for optimisation of main technological factors of welding of low-alloyed structural steels. Doctoral thesis, Kiev: The Paton Welding Institute (in Russian).

    Google Scholar 

  • Kasatkin, O. G. (2005). Estimation of impact energy of low-alloyed weld metal. Automatic Welding, 1, 57–58 (in Russian).

    Google Scholar 

  • Kasatkin, O. G., & Mikhoduy, L. I. (1992). Selection of alloying system for welding of low-alloyed high strength steels. Automatic Welding, 5, 19–25 (in Russian).

    Google Scholar 

  • Kasatkin, O. G., & Seyffarth, P. (1984). Influence of chemical and phase composition of the heat affected zone on its mechanical properties during arc welding of low-alloy steels. Automatic Welding, 2, 5–10 (in Russian).

    Google Scholar 

  • Kasatkin, O. G., & Seyffarth, P. (1994). Dependence of impact energy of low-alloy and alloy weld metal on its composition and microstructure. Automatic Welding, 3, 52–66 (in Russian).

    Google Scholar 

  • Kim, D., & Rhee, S. (2003). Optimisation of GMA welding process using the dual response approach. International Journal of Production Research, 41(18), 4505–4515.

    Google Scholar 

  • Kim, D., Rhee S., & Park H. (2002). Modelling and optimisation of a GMA welding process by genetic algorithm and response surface methodology. International Journal of Production Research, 40(7), 1699–1711.

    Google Scholar 

  • Kluken, A. O., Ibarra, S., Liu, S., & Olson, D. L. (1992). Use of predictive equations for arctic steel heat affected zone properties. In Proceedings of 11th International Conference on Offshore Mechanics and Arctic Engineering (Vol. A, pp. 1–7). Calgary, Canada, June 1992. Publ. ASME.

    Google Scholar 

  • Kumar, A., Zhang, W., Kim, C.-H., & DebRoy, T. (2005). A smart bi-directional model of heat transfer and free surface flow in gas metal arc fillet welding for practicing engineers. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 3–37). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Martikainen, J., Hiltunen, E., Brhane, F., Karkhin, V., & Ivanov, S. (2011). Prediction of liquation crack initiation in Al-Mg-Si alloys welded joints. In J. Lippold, T. Boellinghaus, & C. E. Cross (Eds.), Hot cracking phenomena in welds III (pp. 71–86). Springer.

    Google Scholar 

  • Martikainen, J., Hiltunen, E., Karkhin, V., & Ivanov, S. (2013a). Numerical analysis of liquation cracking in aluminium alloy welded joints. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 401–411). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Martikainen, J., Hiltunen, E., Karkhin, V. A., & Ivanov, S. Yu. (2013b). A method for evaluating the liquation cracking susceptibility of welded joints in Al-Mg-Si alloys. Welding International, 2, 139–143.

    Google Scholar 

  • Michailov, V., Karkhin, V., & Petrov, P. (2016). Principles of welding. St. Petersburg: Polytechnic University Publishing.

    Google Scholar 

  • Muzhichenko, A. F. (2000). Software for prediction of microstructure and mechanical properties of HAZ metal in welding of structural steels. Automatic Welding, 6, 40–43 (in Russian).

    Google Scholar 

  • Muzhichenko, A. F., Demchenko, V. F., & Romanenko A. V. (1991). Software for personal computers to calculate thermal processes in welding and surfacing. Automatic Welding, 6, 73–74 (in Russian).

    Google Scholar 

  • Odanovic, Z., & Nedeljkovic, L. (2001). Numerical modelling of microstructure in heat affected zone of GMA welded HY-100 steel. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 5, pp. 381–392). London: IOM Communications.

    Google Scholar 

  • Ossenbrink, R., & Michailov, V. (2007). Thermomechanical numerical simulation with the maximum temperature austenisation cooling time model (STAAZ). In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 357–372). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Parshin, S. G. (2011). Use of ultradispersed particles in activating flux to increase productivity of MIG/MAG welding of steels. Welding Production, 6, 28–32 (in Russian).

    Google Scholar 

  • Parshin, S. G. (2013). Nanostructured and activating materials for arc welding (624 pp.). St. Petersburg: St. Petersburg Polytechnic University Publishing (in Russian).

    Google Scholar 

  • Petrov, G. L. (1963). Inhomogeneity of weld metal (206 pp.). Leningrad: Sudpromgiz (in Russian).

    Google Scholar 

  • Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian).

    Google Scholar 

  • Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.

    Google Scholar 

  • Seyffarth, P. (1978). Schweiss – ZTU – Schaubilder. Atlas (151 pp.). Rostock: Wilhelm – Pieck – Universitaet, Band 1.; Band 2 (167 pp.) (in German).

    Google Scholar 

  • Seyffarth, P., & Kassatkin, O. G. (1979). Mathematisch – statistische Beschreibung der Austenitumwandlung in der Waermeeinfusszone. Schweisstechnik. Berlin, 3, 117–119 (in German).

    Google Scholar 

  • Seyffarth, P., & Kasatkin, O. G. (2002). Calculation models for evaluating mechanical properties of HAZ metal in welding low-alloyed steels. In V. I. Makhnenko (Ed.), Proceedings of International Conference on Mathematical Modelling and Information Technologies in Welding and Related Processes (pp. 103–106). Kiev: Paton Welding Institute Publishing (in Russian).

    Google Scholar 

  • Seyffarth, P., & Kuscher, G. (1982). Schweiss – ZTU – Schaubilder (233 pp.). Berlin: VEB Verlag Technik (in German).

    Google Scholar 

  • Seyffarth, P., Meyer, B., & Scharff, A. (1992). Grosser Atlas Schweiss – ZTU – Schaubilder (176 pp.). Duesseldorf: DVS – Verlag (in German).

    Google Scholar 

  • Shewmon, P. G. (1963). Diffusion in solids (200 pp.). New York: McGraw-Hill Book Co.

    Google Scholar 

  • Shorshorov, M. H., & Belov, V. V. (1972). Phase transformations and changes of steel properties in welding (220 pp.). Moscow: Nauka (in Russian).

    Google Scholar 

  • Vasudevan, M., Bhaduri, A. K., & Raj, B. (2007). Genetic algorithm for optimizing the A-TIG welding of austenitic stainless steels. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 23–35). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Yazovskikh, V. M., & Belenky, V. Ya. (2011a). Thermal processes in surfacing of solid cylinders. Welding and Diagnostics, 3, 27–31 (in Russian).

    Google Scholar 

  • Yazovskikh, V. M., & Belenky, V. Ya. (2011b). Thermal processes in surfacing of cylindrical solids with strip electrode. Welding Production, 12, 20–24 (in Russian).

    Google Scholar 

  • Yurioka, N., Ohshita, S., & Tamehiro, H. (1981). Study on carbon equivalents to assess cold cracking tendency and hardness. In Proceedings of International Symposium on Pipeline Welding in the ‘80s, 18 March 1981, (pp. 1–15). Publication of Australian Welding Research Association.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Karkhin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karkhin, V.A. (2019). Prediction of Local Microstructure and Mechanical Properties of Welded Joint Metal with Allowance for Its Thermal Cycle. In: Thermal Processes in Welding. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-5965-1_13

Download citation

Publish with us

Policies and ethics