Skip to main content

Sub-Diffraction-Limited Telescopies

  • Chapter
  • First Online:
Engineering Optics 2.0

Abstract

Telescopy is one of the most important applications in engineering optics. In order to improve the observation ability, the optical aperture of telescopes is becoming much larger, which has nearly reached the state-of-the-art technique limit. Sub-diffraction-limited telescopies, which have improved observation ability without enlarging the size of the telescopes, are pursued for a long time. In this chapter, two kinds of sub-diffraction-limited telescopies are introduced for EO 2.0. First, a brief introduction of the telescopy in EO 1.0 is given. Then in Sect. 8.2, we introduce the telescopy based on the super-oscillation in detail. Super-oscillation telescopy with dielectric pupil filter (DPF), metasurfaces, as well as achromatic super-oscillation telescopy are discussed. In Sect. 8.3, a review on another super-resolution telescopy based on orbital angular momentum is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Extremely Large Telescope. https://en.wikipedia.org/wiki/Extremely_Large_Telescope

  2. William Herschel Telescope. https://en.wikipedia.org/wiki/William_Herschel_Telescope

  3. James Webb space telescope. https://en.wikipedia.org/wiki/James_Webb_Space_Telescope

  4. Hubble space telescope. https://en.wikipedia.org/wiki/Hubble_Space_Telescope

  5. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China. Phys. Mech. Astron. 58, 594201 (2015)

    Article  Google Scholar 

  6. E.H.K. Stelzer, S. Grill, The uncertainty principle applied to estimate focal spot dimensions. Opt. Commun. 173, 51–56 (2000)

    Article  CAS  Google Scholar 

  7. J.Y. Wang, J.K. Markey, Modal compensation of atmospheric turbulence phase distortion. J. Opt. Soc. Am. 68, 78–87 (1978)

    Article  Google Scholar 

  8. M. Tegmark, M. Zaldarriaga, Fast fourier transform telescope. Phys. Rev. D 79, 083530 (2009)

    Article  Google Scholar 

  9. A.B. Meinel, Aperture synthesis using independent telescopes. Appl. Opt. 9, 2501–2504 (1970)

    Article  CAS  Google Scholar 

  10. L.W. Chen, Y. Zhou, M.X. Wu, M.H. Hong, Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1, 170001 (2018)

    Google Scholar 

  11. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  12. H. Gao, M. Pu, X. Li, X. Ma, Z. Zhao, Y. Guo, X. Luo, Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt. Express 25, 13933–13943 (2017)

    Article  Google Scholar 

  13. C. Snoeyink, Imaging performance of bessel beam microscopy. Opt. Lett. 38, 2550–2553 (2013)

    Article  Google Scholar 

  14. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  CAS  Google Scholar 

  15. B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)

    Article  CAS  Google Scholar 

  16. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  CAS  Google Scholar 

  17. G.T. Di Francia, Super-gain antennas and optical resolving power. Il Nuovo. Cimento. 9, 426–438 (1952)

    Article  Google Scholar 

  18. M. Martı́nez-Corral, P. Andrés, C.J. Zapata-Rodrı́guez, M. Kowalczyk, Three-dimensional superresolution by annular binary filters. Opt. Commun. 165, 267–278 (1999)

    Google Scholar 

  19. M.V. Berry, S. Popescu, Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A: Math. Gen. 39, 6965 (2006)

    Article  Google Scholar 

  20. E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)

    Article  CAS  Google Scholar 

  21. C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, C-W. Qiu, Three-dimensional supercritical resolved light-induced magnetic holography. Sci. Adv. 3, e1701398 (2017)

    Google Scholar 

  22. F. Qin, K. Huang, J. Wu, J. Teng, C.W. Qiu, M. Hong, A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29, 1602721 (2016)

    Article  Google Scholar 

  23. Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, A. Bahabad, Breaking the temporal resolution limit by superoscillating optical beats. Phys. Rev. Lett. 119, 043903 (2017)

    Article  Google Scholar 

  24. G. Yuan, E.T.F. Rogers, T. Roy, Z. Shen, N.I. Zheludev, Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution. Opt. Express 22, 6428–6437 (2014)

    Article  Google Scholar 

  25. F.M. Huang, T.S. Kao, V.A. Fedotov, Y. Chen, N.I. Zheludev, Nanohole array as a lens. Nano. Lett. 8, 2469–2472 (2008)

    Article  CAS  Google Scholar 

  26. F.M. Huang, N.I. Zheludev, Super-resolution without evanescent waves. Nano. Lett. 9, 1249–1254 (2009)

    Article  CAS  Google Scholar 

  27. K. Huang, H. Ye, J. Teng, S.P. Yeo, B. Luk’yanchuk, C.W. Qiu, Optimization-free superoscillatory lens using phase and amplitude masks. Laser. Photonics. Rev. 8, 152–157 (2014)

    Article  CAS  Google Scholar 

  28. A.M.H. Wong, G.V. Eleftheriades, An optical super-microscope for far-field, real-time imaging beyond the diffraction limit. Sci. Rep. 3, 1715 (2013)

    Article  CAS  Google Scholar 

  29. S. Kosmeier, M. Mazilu, J. Baumgartl, K. Dholakia, Enhanced two-point resolution using optical eigenmode optimized pupil functions. J. Opt. 13, 105707 (2011)

    Article  Google Scholar 

  30. J. Baumgartl, S. Kosmeier, M. Mazilu, E.T.F. Rogers, N.I. Zheludev, K. Dholakia, Far field subwavelength focusing using optical eigenmodes. Appl. Phys. Lett. 98, 181109 (2011)

    Article  Google Scholar 

  31. C. Wang, D. Tang, Y. Wang, Z. Zhao, J. Wang, M. Pu, Y. Zhang, W. Yan, P. Gao, X. Luo, Super-resolution optical telescopes with local light diffraction shrinkage. Sci. Rep. 5, 18485 (2015)

    Article  CAS  Google Scholar 

  32. H. Liu, Y. Yan, Q. Tan, G. Jin, Theories for the design of diffractive superresolution elements and limits of optical superresolution. J. Opt. Soc. Am. A 19, 2185–2193 (2002)

    Article  Google Scholar 

  33. W.K. Pratt, F. Davarian, Fast computational techniques for pseudoinverse and wiener image restoration. IEEE Trans. Comput. C 26, 571–580 (1977)

    Google Scholar 

  34. M. Born, E. Wolf, Principle of Optics, 7th edn. (Pergamon, Oxford, UK, 2007)

    Google Scholar 

  35. Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser. Photonics. Rev. 12, 1800064 (2018)

    Article  Google Scholar 

  36. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    Article  Google Scholar 

  37. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo, Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 9, 713–719 (2015)

    Article  CAS  Google Scholar 

  38. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)

    Article  Google Scholar 

  39. X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact bessel beam generators. Sci. Rep. 6, 20524 (2016)

    Article  CAS  Google Scholar 

  40. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.W. Cheah, C.W. Qiu, J. Li, T. Zentgraf, S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013)

    Article  Google Scholar 

  41. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)

    Article  CAS  Google Scholar 

  42. J. Lin, S. Wu, X. Li, C. Huang, X. Luo, Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays. Appl. Phys. Express 6, 022004 (2013)

    Article  Google Scholar 

  43. G. Yuan, E.T.F. Rogers, T. Roy, G. Adamo, Z. Shen, N.I. Zheludev, Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci. Rep. 4, 6333 (2014)

    Article  CAS  Google Scholar 

  44. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008)

    Article  CAS  Google Scholar 

  45. Q. Zhan, Properties of circularly polarized vortex beams. Opt. Lett. 31, 867–869 (2006)

    Article  Google Scholar 

  46. G.M. Lerman, U. Levy, Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express 16, 4567–4581 (2008)

    Article  Google Scholar 

  47. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, M. Hong, Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 5, 9977 (2015)

    Article  CAS  Google Scholar 

  48. G.A. Swartzlander, Peering into darkness with a vortex spatial filter. Opt. Lett. 26, 497–499 (2001)

    Article  Google Scholar 

  49. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri, Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Sub-Diffraction-Limited Telescopies. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_8

Download citation

Publish with us

Policies and ethics