Skip to main content

Sub-Diffraction-Limited Nanolithography

  • Chapter
  • First Online:
Engineering Optics 2.0
  • 2213 Accesses

Abstract

Sub-diffraction-limited nanolithography is one of the main applications in EO 2.0. In this chapter, we first give a brief introduction about the diffraction-limited lithography and the significance of breaking diffraction limit. Then we would like to summarize the research achievements of plasmonic lithography in the manners of interference, imaging, and direct writing. Some representative techniques are described in detail. The key aspects in evaluating the performance of plasmonic lithography are also discussed, such as resolution, fidelity, and the aspect ratio of nanopatterns. Some new physics and materials accompanying plasmonic devices design as well as lithography are presented. Subsequently, we discuss the engineering aspects of plasmonic lithography, like depth amplification and pattern transfer, resolution enhancement, and precision systems. In addition, practical applications of plasmonic lithography are introduced. The remaining problems and outlooks of plasmonic lithography are given in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Totzeck, W. Ulrich, A. Göhnermeier, W. Kaiser, Pushing deep ultraviolet lithography to its limits. Nat. Photonics 1, 629 (2007)

    Article  CAS  Google Scholar 

  2. C. Wagner, N. Harned, Lithography gets extreme. Nat. Photonics 4, 24 (2010)

    Article  CAS  Google Scholar 

  3. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature 412, 697 (2001)

    Article  CAS  Google Scholar 

  4. Z. Gan, Y. Cao, R.A. Evans, M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013)

    Article  Google Scholar 

  5. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998)

    Article  CAS  Google Scholar 

  6. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)

    Article  CAS  Google Scholar 

  7. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  Google Scholar 

  8. X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)

    Article  Google Scholar 

  9. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  10. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)

    Article  Google Scholar 

  11. X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)

    Article  Google Scholar 

  12. X. Luo, Catenary Optics (Springer, Singapore, 2019)

    Book  Google Scholar 

  13. L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo, Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz. 4, 290–296 (2017)

    Article  CAS  Google Scholar 

  14. X. Chen, X. Luo, H. Tian, J. Shi, Contact or proximity nanolithography system using normal or long wavelength light, Chinese Patent Office Patent ZL03123574.3, 29 May 2003

    Google Scholar 

  15. X. Luo, D. Tsai, M. Gu, M. Hong, Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. (2019)

    Google Scholar 

  16. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, X. Luo, Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt. Express 21, 20683–20691 (2013)

    Article  Google Scholar 

  17. X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)

    Article  Google Scholar 

  18. Z.-W. Liu, Q.-H. Wei, X. Zhang, Surface plasmon interference nanolithography. Nano Lett. 5, 957–961 (2005)

    Article  CAS  Google Scholar 

  19. H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)

    Article  Google Scholar 

  20. T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, X. Luo, Subwavelength nanolithography based on unidirectional excitation of surface plasmons. J. Opt. A Pure Appl. Opt. 11, 085003 (2009)

    Article  Google Scholar 

  21. Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, X. Zhang, Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9, 462–466 (2009)

    Article  CAS  Google Scholar 

  22. W. Ge, C. Wang, Y. Xue, B. Cao, B. Zhang, K. Xu, Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity. Opt. Express 19, 6714–6723 (2011)

    Article  CAS  Google Scholar 

  23. K.V. Sreekanth, V.M. Murukeshan, Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning. J. Opt. Soc. Am. A 27, 95–99 (2010)

    Article  CAS  Google Scholar 

  24. K.V. Sreekanth, V.M. Murukeshan, Effect of metals on UV-excited plasmonic lithography for sub-50 nm periodic feature fabrication. Appl. Phys. A 101, 117–120 (2010)

    Article  CAS  Google Scholar 

  25. X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)

    Article  Google Scholar 

  26. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, X. Luo, Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009)

    Article  CAS  Google Scholar 

  27. J. Dong, J. Liu, G. Kang, J. Xie, Y. Wang, Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci. Rep. 4, 5618 (2014)

    Article  CAS  Google Scholar 

  28. L. Liu, Y. Luo, Z. Zhao, W. Zhang, G. Gao, B. Zeng, C. Wang, X. Luo, Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes. Sci. Rep. 6, 30450 (2016)

    Article  CAS  Google Scholar 

  29. X. Chen, F. Yang, C. Zhang, J. Zhou, L.J. Guo, Large-area high aspect ratio plasmonic interference lithography utilizing a single high-k mode. ACS Nano 10, 4039–4045 (2016)

    Article  CAS  Google Scholar 

  30. B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)

    Article  Google Scholar 

  31. C. Wang, Y. Zhao, D. Gan, C. Du, X. Luo, Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films. Opt. Express 16, 4217–4227 (2008)

    Article  Google Scholar 

  32. G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, X. Luo, Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Adv. Opt. Mater. 3, 1248–1256 (2015)

    Article  CAS  Google Scholar 

  33. Z. Guo, Z.Y. Zhao, L.S. Yan, P. Gao, C.T. Wang, N. Yao, K.P. Liu, B. Jiang, X.G. Luo, Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films. Appl. Phys. Lett. 105, 141107 (2014)

    Article  Google Scholar 

  34. H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, M. Pu, X. Luo, Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt. Mater. Express 8, 199–209 (2018)

    Article  CAS  Google Scholar 

  35. Y. Li, F. Liu, L. Xiao, K. Cui, X. Feng, W. Zhang, Y. Huang, Two-surface-plasmon-polariton-absorption based nanolithography. Appl. Phys. Lett. 102, 063113 (2013)

    Article  Google Scholar 

  36. Y. Li, F. Liu, Y. Ye, W. Meng, K. Cui, X. Feng, W. Zhang, Y. Huang, Two-surface-plasmon-polariton-absorption based lithography using 400 nm femtosecond laser. Appl. Phys. Lett. 104, 081115 (2014)

    Article  Google Scholar 

  37. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  38. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambat, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005)

    Article  Google Scholar 

  39. P. Chaturvedi, N.X. Fang, Molecular scale imaging with a multilayer superlens. MRS Proc. 919, 0919-J04-07 (2006)

    Google Scholar 

  40. D.O.S. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)

    Article  CAS  Google Scholar 

  41. N. Fang, H. Lee, C. Sun, X. Zhang, Diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Article  CAS  Google Scholar 

  42. P. Chaturvedi, W. Wu, V. Logeeswaran, Z. Yu, M.S. Islam, S.Y. Wang, R.S. Williams, N.X. Fang, A smooth optical superlens. Appl. Phys. Lett. 96, 043102 (2010)

    Article  Google Scholar 

  43. H. Liu, B. Wang, L. Ke, J. Deng, C.C. Chum, S.L. Teo, L. Shen, S.A. Maier, J. Teng, High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett. 12, 1549–1554 (2012)

    Article  CAS  Google Scholar 

  44. S. Huang, H. Wang, K.-H. Ding, L. Tsang, Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. Opt. Lett. 37, 1295–1297 (2012)

    Article  Google Scholar 

  45. H. Wang, J.Q. Bagley, L. Tsang, S. Huang, K.-H. Ding, A. Ishimaru, Image enhancement for flat and rough film plasmon superlenses by adding loss. J. Opt. Soc. Am. B 28, 2499–2509 (2011)

    Article  CAS  Google Scholar 

  46. H. Liu, B. Wang, L. Ke, J. Deng, C.C. Choy, M.S. Zhang, L. Shen, S.A. Maier, J.H. Teng, High contrast superlens lithography engineered by loss reduction. Adv. Funct. Mater. 22, 3777–3783 (2012)

    Article  CAS  Google Scholar 

  47. D.B. Shao, S.C. Chen, Numerical simulation of surface-plasmon-assisted nanolithography. Opt. Express 13, 6964–6973 (2005)

    Article  CAS  Google Scholar 

  48. D.B. Shao, S.C. Chen, Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett. 86, 253107 (2005)

    Article  Google Scholar 

  49. M.D. Arnold, R.J. Blaikie, Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. Opt. Express 15, 11542–11552 (2007)

    Article  Google Scholar 

  50. Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, X. Luo, Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods. Opt. Express 24, 27115–27126 (2016)

    Article  CAS  Google Scholar 

  51. http://www.laserfocusworld.com/articles/print/volume-40/issue-8/world-news/surface-plasmon-polaritons-allow-features-to-25-nm.html

  52. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, X. Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142 (2008)

    Google Scholar 

  53. Y. Xiong, Z. Liu, X. Zhang, A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl. Phys. Lett. 94, 203108 (2009)

    Article  Google Scholar 

  54. L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)

    Article  CAS  Google Scholar 

  55. J. Sun, T. Xu, N.M. Litchinitser, Experimental demonstration of demagnifying hyperlens. Nano Lett. 16, 7905–7909 (2016)

    Article  CAS  Google Scholar 

  56. X. Tao, C. Wang, Z. Zhao, Y. Wang, N. Yao, X. Luo, A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens. Appl. Phys. B 114, 545–550 (2014)

    Article  CAS  Google Scholar 

  57. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, X. Luo, Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci. Rep. 5, 15320 (2015)

    Article  CAS  Google Scholar 

  58. W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, X. Luo, Off Axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography. Plasmonics 9, 1333–1339 (2014)

    Article  Google Scholar 

  59. W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, X. Luo, Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination. Plasmonics 10, 51–56 (2015)

    Article  Google Scholar 

  60. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, X. Zhu, Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 11, 893–897 (2011)

    Article  CAS  Google Scholar 

  61. W. Chen, R.L. Nelson, Q. Zhan, Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt. Lett. 37, 1442–1444 (2012)

    Article  Google Scholar 

  62. S. Yang, W. Chen, R.L. Nelson, Q. Zhan, Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 34, 3047–3049 (2009)

    Article  Google Scholar 

  63. M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, X. Luo, Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8, 1635–1641 (2016)

    Article  CAS  Google Scholar 

  64. C. Ma, Z. Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett. 96, 183103 (2010)

    Article  Google Scholar 

  65. Y. Wang, W. Srituravanich, C. Sun, X. Zhang, Plasmonic nearfield scanning probe with high transmission. Nano Lett. 8, 3041–3045 (2008)

    Article  CAS  Google Scholar 

  66. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D.B. Bogy, X. Zhang, Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733 (2008)

    Article  CAS  Google Scholar 

  67. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D.B. Bogy, X. Zhang, Maskless plasmonic lithography at 22 nm resolution. Sci. Rep. 1, 175 (2011)

    Article  CAS  Google Scholar 

  68. S. Kim, H. Jung, Y. Kim, J. Jang, J.W. Hahn, Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch. Adv. Mater. 24, OP337–OP344 (2012)

    CAS  Google Scholar 

  69. Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, X. Luo, Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme. Plasmonics 10, 1607–1613 (2015)

    Article  CAS  Google Scholar 

  70. C. Wang, W. Zhang, Z. Zhao, Y. Wang, P. Gao, Y. Luo, X. Luo, Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review. Micromachines 7, 118 (2016)

    Article  Google Scholar 

  71. J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, X. Luo, Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution. Plasmonics 8, 1073–1078 (2013)

    Article  CAS  Google Scholar 

  72. H. Jung, S. Kim, D. Han, J. Jang, S. Oh, J.-H. Choi, E.-S. Lee, J.W. Hahn, Plasmonic lithography for fabricating nanoimprint masters with multi-scale patterns. J. Micromech. Microeng. 25, 055004 (2015)

    Article  Google Scholar 

  73. P. Gao, X. Li, Z. Zhao, X. Ma, M. Pu, C. Wang, X. Luo, Pushing the plasmonic imaging nanolithography to nano-manufacturing. Opt. Commun. 404, 62–72 (2017)

    Article  CAS  Google Scholar 

  74. O. Ozturk, Multi-scale alignment and positioning system II, Doctor, The University of North Carolina, 2008

    Google Scholar 

  75. R. Fesperman, O. Ozturk, R. Hocken, S. Ruben, T.-C. Tsao, J. Phipps, T. Lemmons, J. Brien, G. Caskey, Multi-scale alignment and positioning system—MAPS. Precis. Eng. 36, 517–537 (2012)

    Article  Google Scholar 

  76. M. Liu, C. Zhao, Y. Luo, Z. Zhao, Y. Wang, P. Gao, C. Wang, X. Luo, Subdiffraction plasmonic lens lithography prototype in stepper mode. J. Vac. Sci. Technol. B 35, 011603 (2016)

    Article  Google Scholar 

  77. H. Jung, Y. Kim, S. Kim, J. Jang, J.W. Hahn, High-resolution laser direct writing with a plasmonic contact probe, in Proceedings of SPIE 8323, Alternative Lithographic Technologies IV, vol. 8323 (2012), pp. 83232A-8323–7

    Google Scholar 

  78. S. Oh, T. Lee, J.W. Hahn, Multifunctional bowtie-shaped ridge aperture for overlay alignment in plasmonic direct writing lithography using a contact probe. Opt. Lett. 38, 2250–2252 (2013)

    Article  Google Scholar 

  79. X. Wen, L.M. Traverso, P. Srisungsitthisunti, X. Xu, E.E. Moon, High precision dynamic alignment and gap control for optical near-field nanolithography. J. Vac. Sci. Technol. B 31, 041601 (2013)

    Article  Google Scholar 

  80. H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343 (2007)

    Article  Google Scholar 

  81. X.-F. Shen, X.-Y. Yang, L.-X. You, Performance of superconducting nanowire single-photon detection system. Chin. Phys. Lett. 27, 087404 (2010)

    Article  Google Scholar 

  82. A. Tuantranont, Applications of Nanomaterials in Sensors and Diagnostics. Springer series on chemical sensors and biosensors (Springer, Berlin Heidelberg, 2014)

    Google Scholar 

  83. N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889 (2014)

    Article  CAS  Google Scholar 

  84. J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, X. Luo, Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale 7, 18805–18812 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Sub-Diffraction-Limited Nanolithography. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_7

Download citation

Publish with us

Policies and ethics