Skip to main content

Super-resolution Microscopy

  • Chapter
  • First Online:
Engineering Optics 2.0
  • 2292 Accesses

Abstract

Optical microscopy is one of the most important scientific instruments in the history of mankind. It has revolutionized the field of life sciences and remains indispensable in many areas of scientific research. However, the resolution of the optical microscopy could not be enhanced infinitely through improving the amplification factor and eliminating the aberration due to the optical diffraction from a limited aperture in optical imaging system, and there exists a theoretical limit, which is named as diffraction limit. Essentially, this is attributed to the loss of high spatial frequencies that contain the details of an object. Although spatial or temporal manipulation of fluorescence microscopy has been demonstrated as an avenue of super-resolution microscopy, they require special labeling of the samples. With the development of subwavelength structured materials, superlens- and hyperlens-based super-resolution microscopies have been proposed for both intensity- and phase-contrast imaging. Furthermore, inspired by the dielectric microsphere-based photonic nanojets and far-field super-oscillation phenomena, new super-resolution microscopies have also been proposed, forming one important research direction of EO 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Für Mikrosk. Anat. 9, 413–418 (1873)

    Article  Google Scholar 

  2. E.H. Synge, XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Lond. Edinb. Dublin Philos. Mag. J. Sci. 6, 356–362 (1928)

    Google Scholar 

  3. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J. 49, 269–279 (1986)

    Article  CAS  Google Scholar 

  4. E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992)

    Article  CAS  Google Scholar 

  5. E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993)

    Article  CAS  Google Scholar 

  6. F. Lu, W. Zhang, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, J. Zhao, Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron. Adv. 1, 180010 (2018)

    Google Scholar 

  7. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  CAS  Google Scholar 

  8. M. Saxena, G. Eluru, S.S. Gorthi, Structured illumination microscopy. Adv. Opt. Photonics 7, 241–275 (2015)

    Article  Google Scholar 

  9. T. Horio, H. Hotani, Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605 (1986)

    Article  CAS  Google Scholar 

  10. S. Chowdhury, A.-H. Dhalla, J. Izatt, Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples. Biomed. Opt. Express 3, 1841–1854 (2012)

    Article  Google Scholar 

  11. K. Carlsson, P.E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, N. Åslund, Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 10, 53–55 (1985)

    Article  CAS  Google Scholar 

  12. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006)

    Article  CAS  Google Scholar 

  13. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642 (2006)

    Article  CAS  Google Scholar 

  14. S.T. Hess, T.P.K. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006)

    Article  CAS  Google Scholar 

  15. Y.M. Sigal, R. Zhou, X. Zhuang, Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880 (2018)

    Article  CAS  Google Scholar 

  16. L.-W. Chen, Y. Zhou, M.-X. Wu, M. Hong, Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1, 170001 (2018)

    Google Scholar 

  17. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. USPEKHI 10, 509–514 (1968)

    Article  Google Scholar 

  18. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435 (2008)

    Article  CAS  Google Scholar 

  19. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  20. J. Pendry, A. Holden, W. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  CAS  Google Scholar 

  21. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  22. R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  CAS  Google Scholar 

  23. H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 430 (2007)

    Article  CAS  Google Scholar 

  24. T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013)

    Article  CAS  Google Scholar 

  25. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7 (2005)

    Google Scholar 

  26. S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, S. Schultz, The asymmetric lossy near-perfect lens. J. Mod. Opt. 49, 1747–1762 (2002)

    Article  Google Scholar 

  27. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  28. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  CAS  Google Scholar 

  29. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a SiC superlens. Science 313, 1595 (2006)

    Article  CAS  Google Scholar 

  30. M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S.C. Kehr, L.M. Eng, Y. Huo, O.G. Schmidt, K. Yao, Y. Liu, M. Helm, Plasmonic superlensing in doped GaAs. Nano Lett. 15, 1057–1061 (2015)

    Article  CAS  Google Scholar 

  31. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, X. Zhang, Far-field optical superlens. Nano Lett. 7, 403–408 (2007)

    Article  CAS  Google Scholar 

  32. Y. Xiong, Z. Liu, C. Sun, X. Zhang, Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007)

    Article  CAS  Google Scholar 

  33. T. Xu, H.J. Lezec, Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat. Commun. 5, 4141 (2014)

    Article  CAS  Google Scholar 

  34. H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, M. Pu, X. Luo, Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt. Mater. Express 8, 199–209 (2018)

    Article  CAS  Google Scholar 

  35. B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)

    Article  Google Scholar 

  36. C. Wang, P. Gao, X. Tao, Z. Zhao, M. Pu, P. Chen, X. Luo, Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl. Phys. Lett. 103, 31911 (2013)

    Article  Google Scholar 

  37. A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74 (2006)

    Google Scholar 

  38. I.I. Smolyaninov, Y.-J. Hung, C.C. Davis, Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007)

    Article  CAS  Google Scholar 

  39. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)

    Article  Google Scholar 

  40. L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)

    Article  CAS  Google Scholar 

  41. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)

    Article  Google Scholar 

  42. D. Lee, Y.D. Kim, M. Kim, S. So, H.-J. Choi, J. Mun, D.M. Nguyen, T. Badloe, J.G. Ok, K. Kim, H. Lee, J. Rho, Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics 5, 2549–2554 (2018)

    Article  CAS  Google Scholar 

  43. Y. Xiong, Z. Liu, X. Zhang, A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl. Phys. Lett. 94, 203108 (2009)

    Article  Google Scholar 

  44. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, X. Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142–21148 (2008)

    Article  CAS  Google Scholar 

  45. B.H. Cheng, Y.Z. Ho, Y.C. Lan, D.P. Tsai, Optical hybrid-superlens hyperlens for superresolution imaging. IEEE J. Sel. Top. Quantum Electron. 19, 4601305 (2013)

    Article  Google Scholar 

  46. B.H. Cheng, Y.-C. Lan, D.P. Tsai, Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt. Express 21, 14898–14906 (2013)

    Article  Google Scholar 

  47. X. Tao, C. Wang, Z. Zhao, Y. Wang, N. Yao, X. Luo, A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens. Appl. Phys. B 114, 545–550 (2014)

    Article  CAS  Google Scholar 

  48. F. Zernike, Luneburg lens for optical waveguide use. Opt. Commun. 12, 379–381 (1974)

    Article  CAS  Google Scholar 

  49. N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, X. Luo, Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Nanotechnology 24, 135203 (2013)

    Article  Google Scholar 

  50. L. Wang, C. Vasilev, D.P. Canniffe, L.R. Wilson, C.N. Hunter, A.J. Cadby, Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy. Opt. Express 20, 3311–3324 (2012)

    Article  CAS  Google Scholar 

  51. D.S. Johnson, J.K. Jaiswal, S. Simon, Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events. Curr. Protoc. Cytom. 61, 12.29.1–12.29.19 (2012)

    Google Scholar 

  52. D. Axelrod, Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001)

    Article  CAS  Google Scholar 

  53. B. Rothenhäusler, W. Knoll, Surface plasmon microscopy. Nature 332, 615 (1988)

    Article  Google Scholar 

  54. G. Stabler, M.G. Somekh, C.W. See, High-resolution wide-field surface plasmon microscopy. J. Microsc. 214, 328–333 (2004)

    Article  CAS  Google Scholar 

  55. K. Watanabe, K. Matsuura, F. Kawata, K. Nagata, J. Ning, H. Kano, Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. Biomed. Opt. Express 3, 354–359 (2012)

    Article  Google Scholar 

  56. J.S. Shumaker-Parry, C.T. Campbell, Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. 76, 907–917 (2004)

    Article  CAS  Google Scholar 

  57. B. Huang, F. Yu, R.N. Zare, Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 79, 2979–2983 (2007)

    Article  CAS  Google Scholar 

  58. B.K. Singh, A.C. Hillier, Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal. Chem. 78, 2009–2018 (2006)

    Article  CAS  Google Scholar 

  59. W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, X. Luo, Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth. Nanoscale 8, 17030–17038 (2016)

    Article  CAS  Google Scholar 

  60. W. Kong, W. Du, K. Liu, H. Liu, Z. Zhao, M. Pu, C. Wang, X. Luo, Surface imaging microscopy with tunable penetration depth as short as 20 nm by employing hyperbolic metamaterials. J. Mater. Chem. C 6, 1797–1805 (2018)

    Article  CAS  Google Scholar 

  61. Z. Chen, A. Taflove, V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214–1220 (2004)

    Article  Google Scholar 

  62. S. Lecler, Y. Takakura, P. Meyrueis, Properties of a three-dimensional photonic jet. Opt. Lett. 30, 2641–2643 (2005)

    Article  Google Scholar 

  63. A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, Experimental confirmation of backscattering enhancement induced by a photonic jet. Appl. Phys. Lett. 89, 221118 (2006)

    Article  Google Scholar 

  64. H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, S. Zhuang, Near-field focusing of the dielectric microsphere with wavelength scale radius. Opt. Express 21, 2434–2443 (2013)

    Article  Google Scholar 

  65. E. Mcleod, C.B. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nano 3, 413–417 (2008)

    Article  CAS  Google Scholar 

  66. G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, M. Hong, Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt. Lett. 40, 625–628 (2015)

    Article  Google Scholar 

  67. Y. Shen, L.V. Wang, J.-T. Shen, Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Opt. Lett. 39, 4120–4123 (2014)

    Article  Google Scholar 

  68. S.-C. Kong, A. Taflove, V. Backman, Quasi one-dimensional light beam generated by a graded-index microsphere. Opt. Express 17, 3722–3731 (2009)

    Article  CAS  Google Scholar 

  69. Z. Hengyu, C. Zaichun, C.T. Chong, H. Minghui, Photonic jet with ultralong working distance by hemispheric shell. Opt. Express 23, 6626–6633 (2015)

    Article  CAS  Google Scholar 

  70. M.X. Wu, B.J. Huang, R. Chen, Y. Yang, J.F. Wu, R. Ji, X.D. Chen, M.H. Hong, Modulation of photonic nanojets generated by microspheres decorated with concentric rings. Opt. Express 23, 20096–20103 (2015)

    Article  CAS  Google Scholar 

  71. M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, M. Hong, Super-focusing of center-covered engineered microsphere. Sci. Rep. 6, 31637 (2016)

    Article  CAS  Google Scholar 

  72. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218 (2011)

    Google Scholar 

  73. H. Yang, R. Trouillon, G. Huszka, M.A.M. Gijs, Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 16, 4862–4870 (2016)

    Article  CAS  Google Scholar 

  74. A. Darafsheh, C. Guardiola, A. Palovcak, J.C. Finlay, A. Cárabe, Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett. 40, 5 (2015)

    Article  Google Scholar 

  75. A. Darafsheh, N.I. Limberopoulos, J.S. Derov, D.E. Walker, V.N. Astratov, Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl. Phys. Lett. 104, 61117 (2014)

    Article  Google Scholar 

  76. J.N. Monks, B. Yan, N. Hawkins, F. Vollrath, Z. Wang, Spider silk: mother nature’s bio-superlens. Nano Lett. 16, 5842–5845 (2016)

    Article  CAS  Google Scholar 

  77. G.T. di Francia, Super-gain antennas and optical resolving power. G Suppl. Nuovo Cimento 9, 426–438 (1952)

    Article  Google Scholar 

  78. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  Google Scholar 

  79. X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)

    Article  Google Scholar 

  80. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo, Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 9, 713–719 (2015)

    Google Scholar 

  81. Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 12, 1800064 (2018)

    Article  Google Scholar 

  82. E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)

    Article  CAS  Google Scholar 

  83. F. Qin, H. Kun, J. Wu, J. Teng, C. Qiu, M. Hong, A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29, 1602721 (2017)

    Article  Google Scholar 

  84. G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)

    Google Scholar 

  85. S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)

    Google Scholar 

  86. C. Snoeyink, Imaging performance of Bessel beam microscopy. Opt. Lett. 38, 2550–2553 (2013)

    Article  Google Scholar 

  87. S.W. Hell, Far-field optical nanoscopy. Science 316, 1153 (2007)

    Article  CAS  Google Scholar 

  88. H. Gao, M. Pu, X. Li, X. Ma, Z. Zhao, Y. Guo, X. Luo, Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt. Express 25, 13933–13943 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Super-resolution Microscopy. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_6

Download citation

Publish with us

Policies and ethics