Skip to main content

Fabrication Techniques

  • Chapter
  • First Online:
Engineering Optics 2.0

Abstract

Different from well-established and highly refined fabrication processes in EO 1.0, the fabrication techniques in EO 2.0 are still imperfect, which need to be carefully investigated to form systematic processing methods. In this chapter, we first introduce the statusĀ of manufacturing techniques in EO 1.0, including the fabrication of refractive, reflective, and diffractive optical elements. The challenges of the manufacturing techniques for EO 1.0 are also summarized. Then, we will introduce the progresses of fabrication techniques in EO 2.0, such as the layered fabrication techniques, direct-writing techniques, and subwavelength structures fabrication techniques. The principles and implementations of these methods will be stated in detail. Some technological challenges in EO 2.0 are also discussed, including large-aperture manufacturing, conformal flexible manufacturing, and super-molecular and super-atom manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Schwertz, An introduction to the optics manufacturing process. Optomech. Rep. (2008)

    Google ScholarĀ 

  2. A.Y.C. Nee, Handbook of Manufacturing Engineering and Technology (Springer, 2015)

    Google ScholarĀ 

  3. H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010)

    Google ScholarĀ 

  4. Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, 2017)

    Google ScholarĀ 

  5. M.T. Gale, K. Knop, The fabrication of fine lens arrays by laser beam writing, in Proceedings of SPIE 0398, Industrial Applications of Laser Technology, vol. 0398 (1983), pp. 0398ā€“7

    Google ScholarĀ 

  6. H.P. Herzig, Micro-Optics: Elements, Systems and Applications (Taylor & Francis Ltd, 1997)

    Google ScholarĀ 

  7. B. Bharat, Encyclopedia of Nanotechnology (Springer Science+Business Media B.V., 2012)

    Google ScholarĀ 

  8. C. Du, X. Dong, C. Qiu, Q. Deng, C. Zhou, Profile control technology for high-performance microlens array. Opt. Eng. 43, 2595ā€“2602 (2004)

    ArticleĀ  Google ScholarĀ 

  9. J.-S. Huang, V. Callegari, P. Geisler, C. BrĆ¼ning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht, Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010)

    ArticleĀ  Google ScholarĀ 

  10. V.J. Logeeswaran, N.P. Kobayashi, M.S. Islam, W. Wu, P. Chaturvedi, N.X. Fang, S.Y. Wang, R.S. Williams, Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 9, 178ā€“182 (2009)

    ArticleĀ  Google ScholarĀ 

  11. J.H. Park, P. Ambwani, M. Manno, N.C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, D.J. Norris, Single-crystalline silver films for plasmonics. Adv. Mater. 24, 3988ā€“3992 (2012)

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K.R. Wu, L.J. Guo, An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 26, 5696ā€“5701 (2014)

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Y. Wu, C. Zhang, N.M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G.K. Pribil, A. AlĆ¹, C.-K. Shih, X. Li, Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater. 26, 6106ā€“6110 (2014)

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948 (2013)

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470 (2013)

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 6, 450 (2012)

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. H. Lee, Z. Liu, Y. Xiong, C. Sun, X. Zhang, Development of optical hyperlens for imaging below the diffraction limit. Opt. Express 15, 15886ā€“15891 (2007)

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)

    ArticleĀ  Google ScholarĀ 

  19. L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973ā€“95978 (2016)

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, X. Luo, Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Adv. Opt. Mater. 3, 1248ā€“1256 (2015)

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946 (2007)

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. M.Y. Shalaginov, V.V. Vorobyov, J. Liu, M. Ferrera, A.V. Akimov, A. Lagutchev, A.N. Smolyaninov, V.V. Klimov, J. Irudayaraj, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser Photonics Rev. 9, 120ā€“127 (2014)

    ArticleĀ  Google ScholarĀ 

  23. D. Gil, R. Menon, H.I. Smith, The promise of diffractive optics in maskless lithography. Micro Nano Eng. 2003(73ā€“74), 35ā€“41 (2004)

    ArticleĀ  Google ScholarĀ 

  24. R. Menon, E.E. Moon, M.K. Mondol, F.J. CastaƱo, H.I. Smith, Scanning-spatial-phase alignment for zone-plate-array lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22, 3382ā€“3385 (2004)

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. R. Menon, A. Patel, E.E. Moon, H.I. Smith, Alpha-prototype system for zone-plate-array lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22, 3032ā€“3037 (2004)

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. H.I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, G. Barbastathis, Zone-plate-array lithography: a low-cost complement or competitor to scanning-electron-beam lithography. Microelectron. Eng. MNE 2005(83), 956ā€“961 (2006)

    ArticleĀ  Google ScholarĀ 

  27. R. Menon, A. Patel, D. Chao, M. Walsh, H.I. Smith, Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning, in Proceedings of SPIE 5751, Emerging Lithographic Technologies IX, vol. 5751 (2005), pp. 5751ā€“10

    Google ScholarĀ 

  28. P. BjƶrnƤngen, M. Ekberg, T. Ɩstrƶm, H.A. Fosshaug, J. Karlsson, C. Bjƶrnberg, F.K. Nikolajeff, M. Karlsson, DOE manufacture with the DUV SLM-based Sigma7300 laser pattern generator, in Proceedings of SPIE 5377, Optical Microlithography XVII, vol. 5377 (2004), pp. 5377ā€“10

    Google ScholarĀ 

  29. U.B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, H. Sjoeberg, A high-end mask writer using a spatial light modulator, in Proceedings of SPIE 5721, MOEMS Display and Imaging Systems III, vol. 5721 (2005), pp. 5721ā€“10

    Google ScholarĀ 

  30. H.K. Lakner, P. Duerr, U. Dauderstaedt, W. Doleschal, J. Amelung, Design and fabrication of micromirror arrays for UV lithography, in Proceedings of SPIE 4561, MOEMS and Miniaturized Systems II, vol. 4561 (2001), pp. 4561ā€“10

    Google ScholarĀ 

  31. H. Martinsson, T. Sandstrom, A.J. Bleeker, J.D. Hintersteiner, Current status of optical maskless lithography. J. MicroNanolithograhy MEMS MOEMS 4, 011003-4ā€“15 (2005)

    Google ScholarĀ 

  32. J. Aman, H.A. Fosshaug, T. Hedqvist, J. Harkesjo, P. Hogfeldt, M. Jacobsson, A. Karawajczyk, J. Karlsson, M. Rosling, H.J. Sjoberg, Properties of a 248-nm DUV laser mask pattern generator for the 90-nm and 65-nm technology nodes, in Proceedings of SPIE 5256, 23rd Annual BACUS Symposium on Photomask Technology, vol. 5256 (2003), pp. 5256ā€“11

    Google ScholarĀ 

  33. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513 (2009)

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. A. Frƶlich, J. Fischer, T. Zebrowski, K. Busch, M. Wegener, Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25, 3588ā€“3592 (2013)

    ArticleĀ  Google ScholarĀ 

  35. J. Fischer, J.B. Mueller, A.S. Quick, J. Kaschke, C. Barner-Kowollik, M. Wegener, Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater. 3, 221ā€“232 (2014)

    ArticleĀ  Google ScholarĀ 

  36. J. Kaschke, M. Wegener, Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett. 40, 3986ā€“3989 (2015)

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Z. Gan, Y. Cao, R.A. Evans, M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9Ā nm feature size. Nat. Commun. 4, 2061 (2013)

    ArticleĀ  Google ScholarĀ 

  38. Z. Gan, M.D. Turner, M. Gu, Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016)

    ArticleĀ  Google ScholarĀ 

  39. S. Tan, R. Livengood, D. Shima, J. Notte, S. McVey, Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications. J. Vac. Sci. Technol. B 28, C6F15ā€“C6F21 (2010)

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26, 1197ā€“1276 (2008)

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    ArticleĀ  Google ScholarĀ 

  42. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008)

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. A. Cui, Z. Liu, J. Li, T.H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, C. Gu, Directly patterned substrate-free plasmonic ā€œnanograterā€ structures with unusual Fano resonances. Light Sci. Appl. 4, e308 (2015)

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, N.X. Fang, Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018)

    ArticleĀ  Google ScholarĀ 

  45. B.R. Appleton, S. Tongay, M. Lemaitre, B. Gila, D. Hays, A. Scheuermann, J. Fridmann, Multi-ion beam lithography and processing studies. MRS Proc. 1354, mrss11-1354-ii03-05 (2011)

    Google ScholarĀ 

  46. B. Gila, B.R. Appleton, J. Fridmann, P. Mazarov, J.E. Sanabia, S. Bauerdick, L. Bruchhaus, R. Mimura, R. Jede, First results from a multi-ion beam lithography and processing system at the University Of Florida. AIP Conf. Proc. 1336, 243ā€“247 (2011)

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama, Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 18, 3181ā€“3184 (2000)

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, A. Passaseo, Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition. Adv. Opt. Mater. 2, 154ā€“161 (2013)

    ArticleĀ  Google ScholarĀ 

  49. M. Esposito, V. Tasco, F. Todisco, M. CuscunĆ , A. Benedetti, M. Scuderi, G. Nicotra, A. Passaseo, Programmable extreme chirality in the visible by helix-shaped metamaterial platform. Nano Lett. 16, 5823ā€“5828 (2016)

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg, L. Kuipers, Coreā€“shell plasmonic nanohelices. ACS Photonics 4, 1858ā€“1863 (2017)

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. M. Yan, S. Choi, K.R.V. Subramanian, I. Adesida, The effects of molecular weight on the exposure characteristics of poly(methylmethacrylate) developed at low temperatures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26, 2306ā€“2310 (2008)

    CASĀ  Google ScholarĀ 

  52. B. Cord, J. Yang, H. Duan, D.C. Joy, J. Klingfus, K.K. Berggren, Limiting factors in sub-10Ā nm scanning-electron-beam lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 2616ā€“2621 (2009)

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. L.E. Ocola, A. Stein, Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 3061ā€“3065 (2006)

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. J. Reinspach, M. Lindblom, O. von Hofsten, M. Bertilson, H.M. Hertz, A. Holmberg, Cold-developed electron-beam-patterned ZEP 7000 for fabrication of 13Ā nm nickel zone plates. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 2593ā€“2596 (2009)

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. T. Okada, J. Fujimori, M. Aida, M. Fujimura, T. Yoshizawa, M. Katsumura, T. Iida, Enhanced resolution and groove-width simulation in cold development of ZEP520A. J. Vac. Sci. Technol. B 29, 021604 (2011)

    ArticleĀ  Google ScholarĀ 

  56. J.K.W. Yang, K.K. Berggren, Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 25, 2025ā€“2029 (2007)

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333ā€“337 (2011)

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. M.A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, F. Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl. Acad. Sci. 109, 12364 (2012)

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. K. Oā€™Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379 (2015)

    ArticleĀ  Google ScholarĀ 

  60. A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937 (2015)

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. M.I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N.M. Litchinitser, High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261ā€“6266 (2015)

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31 (2007)

    ArticleĀ  Google ScholarĀ 

  63. N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photonics 3, 157 (2009)

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. R.C. Devlin, M. Khorasaninejad, W.T. Chen, J. Oh, F. Capasso, Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. 113, 10473ā€“10478 (2016)

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190 (2016)

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17, 4902ā€“4907 (2017)

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229ā€“7234 (2016)

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573ā€“1585 (2018)

    ArticleĀ  CASĀ  Google ScholarĀ 

  69. D. Xia, Z. Ku, S.C. Lee, S.R.J. Brueck, Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 23, 147ā€“179 (2010)

    ArticleĀ  Google ScholarĀ 

  70. L. Wang, D. Fan, V.A. Guzenko, Y. Ekinci, Facile fabrication of high-resolution extreme ultraviolet interference lithography grating masks using footing strategy during electron beam writing. J. Vac. Sci. Technol. B 31, 06F602 (2013)

    ArticleĀ  Google ScholarĀ 

  71. R.H. French, H. Sewell, M.K. Yang, S. Peng, D.C. McCafferty, W. Qiu, R.C. Wheland, M.F. Lemon, L. Markoya, M.K. Crawford, Imaging of 32-nm 1:1 lines and spaces using 193-nm immersion interference lithography with second-generation immersion fluids to achieve a numerical aperture of 1.5 and ak 1 of 0.25. J. MicroNanolithograhy MEMS MOEMS 4, 031103-4ā€“14 (2005)

    Google ScholarĀ 

  72. Y. Ekinci, M. Vockenhuber, M. Hojeij, L. Wang, N. Mojarad, Evaluation of EUV resist performance with interference lithography towards 11Ā nm half-pitch and beyond, in Proceedings of SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, vol. 8679 (2013), pp. 867910-8679ā€“11

    Google ScholarĀ 

  73. T. Ito, S. Okazaki, Pushing the limits of lithography. Nature 406, 1027 (2000)

    ArticleĀ  CASĀ  Google ScholarĀ 

  74. U. Okoroanyanwu, Chemistry and Lithography (SPIE Press, 2010)

    Google ScholarĀ 

  75. T. Hu, C.-K. Tseng, Y.H. Fu, Z. Xu, Y. Dong, S. Wang, K.H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, Y. Gu, Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548ā€“19554 (2018)

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. S. Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Sci. 272, 85 (1996)

    Google ScholarĀ 

  77. W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C.B. Murray, A. Alu, C.R. Kagan, Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces. Nano Lett. 15, 5254ā€“5260 (2015)

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. S.V. Makarov, V. Milichko, E.V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y.S. Kivshar, A.A. Zakhidov, Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728ā€“735 (2017)

    ArticleĀ  CASĀ  Google ScholarĀ 

  79. X. Zhu, C. Vannahme, E. HĆøjlund-Nielsen, N.A. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325 (2015)

    ArticleĀ  Google ScholarĀ 

  80. T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography and future patterning for semiconductor devices. J. MicroNanolithograhy MEMS MOEMS 10, 043008-10ā€“8 (2011)

    Google ScholarĀ 

  81. S. Ahn, M. Ganapathisubramanian, M. Miller, J. Yang, J. Choi, F. Xu, D.J. Resnick, S.V. Sreenivasan, Roll-to-roll nanopatterning using jet and flash imprint lithography, in Proceedings of SPIE 8323, Alternative Lithographic Technologies IV, vol. 8323 (2012), p. 83231Lā€“8323ā€“7

    Google ScholarĀ 

  82. S.H. Ahn, L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304ā€“2310 (2009)

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. S. Vignolini, N.A. Yufa, P.S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J.J. Baumberg, U. Steiner, A 3D optical metamaterial made by self-assembly. Adv. Mater. 24, OP23ā€“OP27 (2011)

    Google ScholarĀ 

  84. J.Y. Kim, H. Kim, B.H. Kim, T. Chang, J. Lim, H.M. Jin, J.H. Mun, Y.J. Choi, K. Chung, J. Shin, S. Fan, S.O. Kim, Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Commun. 7, 12911 (2016)

    ArticleĀ  Google ScholarĀ 

  85. A. Nemiroski, M. Gonidec, J.M. Fox, P. Jean-Remy, E. Turnage, G.M. Whitesides, Engineering shadows to fabricate optical metasurfaces. ACS Nano 8, 11061ā€“11070 (2014)

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Fabrication Techniques. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_5

Download citation

Publish with us

Policies and ethics