Skip to main content

Material Basis

  • Chapter
  • First Online:
Engineering Optics 2.0
  • 2219 Accesses

Abstract

The electromagnetic properties of materials determine the way of light–matter interaction. Traditional engineering optics (i.e., EO 1.0) relies on the natural occurring materials whose electromagnetic properties are greatly restricted by the molecules or atoms. When combined with traditional laws of reflection and refraction, the optical systems are often complex and bulky to perform a special function. Distinct from EO 1.0, the material basis of EO 2.0 not only includes the natural occurring materials but also recently emerging artificial materials, whose physical properties are engineered by assembling microscopic and nanoscopic structures in unusual combinations. In this chapter, the commonly used natural materials and some unique metamaterials, e.g., negative-index metamaterials, near-zero index metamaterials, ultra-high index metamaterials, and hyperbolic metamaterials are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 0, 1804680 (2018)

    Google Scholar 

  2. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  CAS  Google Scholar 

  3. V.G. Veselago, E.E. Narimanov, The left hand of brightness: past, present and future of negative index materials. Nat. Mater. 5, 759–762 (2006)

    Article  CAS  Google Scholar 

  4. H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010)

    Article  CAS  Google Scholar 

  5. H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)

    Article  CAS  Google Scholar 

  6. N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014)

    Article  CAS  Google Scholar 

  7. X. Luo, Subwavelength electromagnetics. Front. Optoelectron. 9, 138–150 (2016)

    Article  Google Scholar 

  8. M. Pu, C. Wang, Y. Wang, X. Luo, Subwavelength electromagnetics below the diffraction limit. Acta Phys. Sin. 66, 144101 (2017)

    Google Scholar 

  9. S.M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Material platforms for optical metasurfaces. Nanophotonics 7, 959 (2018)

    Article  Google Scholar 

  10. S.A. Maier in Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  11. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)

    Article  CAS  Google Scholar 

  12. U. Guler, A. Boltasseva, V.M. Shalaev, Refractory plasmonics. Science 344, 263–264 (2014)

    Article  CAS  Google Scholar 

  13. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)

    Article  CAS  Google Scholar 

  14. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012)

    Article  CAS  Google Scholar 

  15. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)

    Article  CAS  Google Scholar 

  16. Y. Wang, A.C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, L. Dal Negro, Tunability of indium tin oxide materials for mid-infrared plasmonics applications. Opt. Mater. Express 7, 2727–2739 (2017)

    Article  CAS  Google Scholar 

  17. E. Feigenbaum, K. Diest, H.A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010)

    Article  CAS  Google Scholar 

  18. Y.-W. Huang, H.W.H. Lee, R. Sokhoyan, R.A. Pala, K. Thyagarajan, S. Han, D.P. Tsai, H.A. Atwater, Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016)

    Article  CAS  Google Scholar 

  19. A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)

    Article  Google Scholar 

  20. G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. 109, 8834–8838 (2012)

    Article  CAS  Google Scholar 

  21. G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1, 1090–1099 (2011)

    Article  CAS  Google Scholar 

  22. S. Colburn, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, A. Majumdar, Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces. Opt. Mater. Express 8, 2330–2344 (2018)

    Article  Google Scholar 

  23. A.N. Pikhtin, A.D. Yas’kov, Dispersion of the refractive index in semiconductors with diamond and zinc-blend structures. Sov. Phys. Semicond. 12, 622–626 (1978)

    Google Scholar 

  24. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354, 2472 (2016)

    Google Scholar 

  25. I. Staude, J. Schilling, Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017)

    Article  CAS  Google Scholar 

  26. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190 (2016)

    Article  CAS  Google Scholar 

  27. R.C. Devlin, M. Khorasaninejad, W.T. Chen, J. Oh, F. Capasso, Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. (2016)

    Google Scholar 

  28. C.N. Berglund, H.J. Guggenheim, Electronic properties of VO2 near the semiconductor-metal transition. Phys. Rev. 185, 1022–1033 (1969)

    Article  CAS  Google Scholar 

  29. Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016)

    Article  CAS  Google Scholar 

  30. N. Raeis-Hosseini, J. Rho, metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 10, 1046 (2017)

    Article  CAS  Google Scholar 

  31. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008)

    Article  CAS  Google Scholar 

  32. S. Walia, C.M. Shah, P. Gutruf, H. Nili, D.R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram, Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015)

    Article  CAS  Google Scholar 

  33. S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 5, 1600829 (2017)

    Article  CAS  Google Scholar 

  34. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  35. M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu, Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev. 118, 6236–6296 (2018)

    Article  CAS  Google Scholar 

  36. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419 (2013)

    Article  CAS  Google Scholar 

  37. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I.K.I. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  38. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)

    Article  CAS  Google Scholar 

  39. K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192 (2012)

    Article  CAS  Google Scholar 

  40. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  CAS  Google Scholar 

  41. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    Article  CAS  Google Scholar 

  42. G.W. Hanson, Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104, 084314 (2008)

    Article  CAS  Google Scholar 

  43. P.-Y. Chen, A. Alù, Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855–5863 (2011)

    Article  CAS  Google Scholar 

  44. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.-M. Shih, J. Hone, T.F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90, 205422 (2014)

    Article  CAS  Google Scholar 

  45. B. Deng, R. Frisenda, C. Li, X. Chen, A. Castellanos-Gomez, F. Xia, Progress on black phosphorus photonics. Adv. Opt. Mater. 6, 1800365 (2018)

    Article  CAS  Google Scholar 

  46. X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015)

    Article  CAS  Google Scholar 

  47. F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

    Article  CAS  Google Scholar 

  48. A.J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C.T. Ellis, N. Assefa, I. Chatzakis, T.L. Reinecke, J.G. Tischler, M.M. Fogler, J.H. Edgar, D.N. Basov, J.D. Caldwell, Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134 (2017)

    Article  CAS  Google Scholar 

  49. M. Tamagnone, A. Ambrosio, K. Chaudhary, L.A. Jauregui, P. Kim, W.L. Wilson, F. Capasso, Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4 (2018)

    Google Scholar 

  50. X. Lin, Y. Shen, I. Kaminer, H. Chen, M. Soljačić, Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials. Phys. Rev. A 94, 023836 (2016)

    Article  CAS  Google Scholar 

  51. W. Ma, P. Alonso-González, S. Li, A.Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee, R. Hillenbrand, Q. Bao, In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018)

    Article  CAS  Google Scholar 

  52. L. Dou, Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 5, 11165–11173 (2017)

    Article  CAS  Google Scholar 

  53. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014)

    Article  CAS  Google Scholar 

  54. H.S. Jung, N.-G. Park, Perovskite solar cells: from materials to devices. Small 11, 10–25 (2014)

    Article  CAS  Google Scholar 

  55. X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 1804680 (2018)

    Google Scholar 

  56. R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  CAS  Google Scholar 

  57. I. Liberal, N. Engheta, Near-zero refractive index photonics. Nat. Photonics 11, 149 (2017)

    Article  CAS  Google Scholar 

  58. B. Bai, Y. Svirko, J. Turunen, T. Vallius, Optical activity in planar chiral metamaterials: theoretical study. Phys. Rev. A 76, 023811 (2007)

    Article  CAS  Google Scholar 

  59. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  60. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  61. H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)

    Article  Google Scholar 

  62. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  CAS  Google Scholar 

  63. X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)

    Article  Google Scholar 

  64. Y. Guo, M. Pu, X. Li, X. Ma, P. Gao, Y. Wang, X. Luo, Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. J. Phys. Condens. Matter 30, 144003 (2018)

    Article  Google Scholar 

  65. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)

    Article  Google Scholar 

  66. A.V. Kildishev, E.E. Narimanov, Impedance-matched hyperlens. Opt. Lett. 32, 3432–3434 (2007)

    Article  Google Scholar 

  67. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)

    Article  CAS  Google Scholar 

  68. Y. Guo, M. Pu, X. Ma, X. Li, X. Luo, Advances of dispersion-engineered metamaterials. Opto-Electron. Eng. 44, 3–22 (2017)

    Google Scholar 

  69. Y. Xiong, Z. Liu, C. Sun, X. Zhang, Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007)

    Article  CAS  Google Scholar 

  70. H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205–209 (2012)

    Article  CAS  Google Scholar 

  71. S.A. Ramakrishna, J.B. Pendry, M.C.K. Wiltshire, W.J. Stewart, Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003)

    Article  CAS  Google Scholar 

  72. B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)

    Article  CAS  Google Scholar 

  73. C. Wang, P. Gao, X. Tao, Z. Zhao, M. Pu, P. Chen, X. Luo, Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl. Phys. Lett. 103, 031911 (2013)

    Article  CAS  Google Scholar 

  74. Z. Guo, Z.Y. Zhao, L.S. Yan, P. Gao, C.T. Wang, N. Yao, K.P. Liu, B. Jiang, X. Luo, Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films. Appl. Phys. Lett. 105, 141107 (2014)

    Article  CAS  Google Scholar 

  75. T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013)

    Article  CAS  Google Scholar 

  76. R. Maas, E. Verhagen, J. Parsons, A. Polman, Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials. ACS Photonics 1, 670–676 (2014)

    Article  CAS  Google Scholar 

  77. G. Ren, C. Wang, G. Yi, X. Tao, X. Luo, Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics 8, 1065–1072 (2013)

    Article  CAS  Google Scholar 

  78. L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)

    Article  CAS  Google Scholar 

  79. J. Sun, T. Xu, N.M. Litchinitser, Experimental demonstration of demagnifying hyperlens. Nano Lett. 16, 7905–7909 (2016)

    Article  CAS  Google Scholar 

  80. J. Pendry, A. Holden, W. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  CAS  Google Scholar 

  81. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  82. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  CAS  Google Scholar 

  83. D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)

    Article  CAS  Google Scholar 

  84. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. USPEKHI 10, 509–514 (1968)

    Article  Google Scholar 

  85. G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, S. Linden, Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006)

    Article  CAS  Google Scholar 

  86. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008)

    Article  CAS  Google Scholar 

  87. L. Liu, H. Shi, X. Luo, X. Wei, C. Du, A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires. Appl. Phys. A 95, 563–566 (2009)

    Article  CAS  Google Scholar 

  88. J.T. Shen, P.B. Catrysse, S. Fan, Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 94, 197401 (2005)

    Article  CAS  Google Scholar 

  89. M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011)

    Article  CAS  Google Scholar 

  90. J. Sun, N.M. Litchinitser, J. Zhou, Indefinite by nature: from ultraviolet to terahertz. ACS Photonics 1, 293–303 (2014)

    Article  CAS  Google Scholar 

  91. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    Article  CAS  Google Scholar 

  92. X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 6, 450 (2012)

    Article  CAS  Google Scholar 

  93. T.U. Tumkur, L. Gu, J.K. Kitur, E.E. Narimanov, M.A. Noginov, Control of absorption with hyperbolic metamaterials. Appl. Phys. Lett. 100, 161103 (2012)

    Article  CAS  Google Scholar 

  94. L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Material Basis. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_3

Download citation

Publish with us

Policies and ethics