Skip to main content

Radiation Engineering and Optical Phased Array

  • Chapter
  • First Online:
Engineering Optics 2.0

Abstract

Radiation is a very important energy conversion process in engineering optics. Effective thermal radiation management can not only improve the efficiency of thermophotovoltaics but also realize passive radiative cooling, thermal cloak, and camouflage. Besides, light-emitting diode (LED) with small volume and high efficiency is poised to replace the traditional light bulb and liquid crystal display (LCD) in the next few decades. In addition, minimized micro-/nanolaser that can serve as coherent light sources in on-chip electro-photonic circuits can be widely applied in nanoscale applications. Finally, if the phase retardation of coherent emitters can be actively controlled in a compact manner, high-performance optical phased light detection and ranging will replace the traditional beam scanning technology based on mechanical steering. In this chapter, we give a detailed discussion about the radiation engineering technology and optical phased array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Li, S. Fan, Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995–16021 (2018)

    Article  CAS  Google Scholar 

  2. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)

    Article  CAS  Google Scholar 

  3. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014)

    Article  CAS  Google Scholar 

  4. M. Karl, J.M.E. Glackin, M. Schubert, N.M. Kronenberg, G.A. Turnbull, I.D.W. Samuel, M.C. Gather, Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018)

    Article  Google Scholar 

  5. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, R. Baets, Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 34, 1477–1479 (2009)

    Article  Google Scholar 

  6. X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)

    Article  Google Scholar 

  7. X. Ma, M. Pu, X. Li, Y. Guo, X. Luo, All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv. 2, 180023 (2019)

    Google Scholar 

  8. I. Celanovic, D. Perreault, J. Kassakian, Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005)

    Article  Google Scholar 

  9. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)

    Article  Google Scholar 

  10. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)

    Article  CAS  Google Scholar 

  11. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)

    Article  CAS  Google Scholar 

  12. J.H. Park, S.E. Han, P. Nagpal, D.J. Norris, Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photonics 3, 494–500 (2016)

    Google Scholar 

  13. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt. Express 21, 11618–11627 (2013)

    Article  CAS  Google Scholar 

  14. S. Basu, Z.M. Zhang, C.J. Fu, Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009)

    Article  CAS  Google Scholar 

  15. J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621 (1999)

    Article  CAS  Google Scholar 

  16. X. Luo, Catenary Optics (Springer Singapore, 2019)

    Google Scholar 

  17. Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob, Broadband super-planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012)

    Article  Google Scholar 

  18. X. Liu, Z. Zhang, Near-field thermal radiation between metasurfaces. ACS Photonics 2, 1320–1326 (2015)

    Google Scholar 

  19. A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljacic, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014)

    Article  CAS  Google Scholar 

  20. M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, X. Luo, Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)

    Article  CAS  Google Scholar 

  21. D.M. Bierman, A. Lenert, W.R. Chan, B. Bhatia, I. Celanović, M. Soljačić, E.N. Wang, Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016)

    Article  CAS  Google Scholar 

  22. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)

    Article  CAS  Google Scholar 

  23. Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062 (2017)

    Article  CAS  Google Scholar 

  24. Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, X. Luo, Broadband metamaterial as an “invisible” radiative cooling coat. Opt. Commun. 407, 204–207 (2018)

    Article  CAS  Google Scholar 

  25. O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci, N. Kakevov, S. Balci, S. Olcum, S. Süzer, C. Kocabas, Graphene based adaptive thermal camouflage. Nano Lett. 18, 4541–4547 (2018)

    Google Scholar 

  26. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234 (2012)

    Article  CAS  Google Scholar 

  27. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326 (2014)

    Article  CAS  Google Scholar 

  28. K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63 (2016)

    Google Scholar 

  29. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014)

    Article  CAS  Google Scholar 

  30. X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, E.H. Sargent, Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10, 253 (2016)

    Article  CAS  Google Scholar 

  31. X. Zhao, J.D.A. Ng, R.H. Friend, Z.-K. Tan, Opportunities and challenges in perovskite light-emitting devices. ACS Photonics 5, 3866–3875 (2018)

    Article  CAS  Google Scholar 

  32. Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014)

    Article  CAS  Google Scholar 

  33. G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T.C. Jellicoe, F. de la Peña, S. Hou, C. Ducati, F. Gao, R.H. Friend, N.C. Greenham, Z.-K. Tan, Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016)

    Article  CAS  Google Scholar 

  34. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, T.-W. Lee, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222 (2015)

    Article  CAS  Google Scholar 

  35. Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018)

    Article  Google Scholar 

  36. K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, Z. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018)

    Article  CAS  Google Scholar 

  37. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)

    Article  Google Scholar 

  38. R.A. Meyer, Optical beam steering using a multichannel lithium tantalate crystal. Appl. Opt. 11, 613–616 (1972)

    Article  CAS  Google Scholar 

  39. P.F. McManamon, P.J. Bos, M.J. Escuti, J. Heikenfeld, S. Serati, H. Xie, E.A. Watson, A review of phased array steering for narrow-band electrooptical systems. Proc. IEEE 97, 1078–1096 (2009)

    Article  Google Scholar 

  40. X. Zhao, C. Liu, D. Zhang, Y. Luo, Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering. Appl. Opt. 52, 7109–7116 (2013)

    Article  Google Scholar 

  41. D.R. Wight, J.M. Heaton, B.T. Hughes, J.C.H. Birbeck, K.P. Hilton, D.J. Taylor, Novel phased array optical scanning device implemented using GaAs/AlGaAs technology. Appl. Phys. Lett. 59, 899–901 (1991)

    Article  CAS  Google Scholar 

  42. F. Vasey, F.K. Reinhart, R. Houdré, J.M. Stauffer, Spatial optical beam steering with an AlGaAs integrated phased array. Appl. Opt. 32, 3220–3232 (1993)

    Article  CAS  Google Scholar 

  43. K. Van Acoleyen, H. Rogier, R. Baets, Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express 18, 13655–13660 (2010)

    Article  Google Scholar 

  44. J.K. Doylend, M.J.R. Heck, J.T. Bovington, J.D. Peters, L.A. Coldren, J.E. Bowers, Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 19, 21595–21604 (2011)

    Article  CAS  Google Scholar 

  45. K. Van Acoleyen, K. Komorowska, W. Bogaerts, R. Baets, One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator. J. Light. Technol. 29, 3500–3505 (2011)

    Article  Google Scholar 

  46. C.T. DeRose, R.D. Kekatpure, D.C. Trotter, A. Starbuck, J.R. Wendt, A. Yaacobi, M.R. Watts, U. Chettiar, N. Engheta, P.S. Davids, Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt. Express 21, 5198–5208 (2013)

    Article  CAS  Google Scholar 

  47. D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, R.T. Chen, Corrugated waveguide-based optical phased array with crosstalk suppression. IEEE Photon. Technol. Lett. 26, 991–994 (2014)

    Article  Google Scholar 

  48. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, R.T. Chen, On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett. 39, 941–944 (2014)

    Article  CAS  Google Scholar 

  49. H. Abediasl, H. Hashemi, Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express 23, 6509–6519 (2015)

    Article  CAS  Google Scholar 

  50. B.A. Nia, L. Yousefi, M. Shahabadi, Integrated optical-phased array nanoantenna system using a plasmonic rotman lens. J. Light. Technol. 34, 2118–2126 (2016)

    Article  CAS  Google Scholar 

  51. W.S. Rabinovich, P.G. Goetz, M.W. Pruessner, R. Mahon, M.S. Ferraro, D. Park, E.F. Fleet, M.J. DePrenger, Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array. Opt. Eng. 55, 111603 (2016)

    Google Scholar 

  52. D.N. Hutchison, J. Sun, J.K. Doylend, R. Kumar, J. Heck, W. Kim, C.T. Phare, A. Feshali, H. Rong, High-resolution aliasing-free optical beam steering. Optica 3, 887–890 (2016)

    Article  CAS  Google Scholar 

  53. J. Notaros, C.V. Poulton, M.J. Byrd, M. Raval, M.R. Watts, Integrated optical phased arrays for quasi-Bessel-beam generation. Opt. Lett. 42, 3510–3513 (2017)

    Article  CAS  Google Scholar 

  54. C.V. Poulton, M.J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, M. Watts, Large-scale visible and infrared optical phased arrays in silicon nitride. Conference on lasers and electro-optics, OSA technical digest (Online) (Optical Society of America, 2017), p. STh1 M.1

    Google Scholar 

  55. C.V. Poulton, A. Yaacobi, D.B. Cole, M.J. Byrd, M. Raval, D. Vermeulen, M.R. Watts, Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091–4094 (2017)

    Article  CAS  Google Scholar 

  56. C.V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, M.R. Watts, Lens-free chip-to-chip free-space laser communication link with a silicon photonics optical phased array. Frontiers in Optics 2017, OSA technical digest (Online) (Optical Society of America, 2017), p. FW5A.3

    Google Scholar 

  57. M. Raval, C.V. Poulton, M.R. Watts, Unidirectional waveguide grating antennas with uniform emission for optical phased arrays. Opt. Lett. 42, 2563–2566 (2017)

    Article  Google Scholar 

  58. J. Sun, E. Timurdogan, A. Yaacobi, E.S. Hosseini, M.R. Watts, Large-scale nanophotonic phased array. Nature 493, 195–199 (2013)

    Article  CAS  Google Scholar 

  59. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–250 (1972)

    Google Scholar 

  60. F. Aflatouni, B. Abiri, A. Rekhi, A. Hajimiri, Nanophotonic projection system. Opt. Express 23, 21012–21022 (2015)

    Article  CAS  Google Scholar 

  61. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, M.R. Watts, Integrated phased array for wide-angle beam steering. Opt. Lett. 39, 4575–4578 (2014)

    Article  Google Scholar 

  62. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815–6820 (2005)

    Article  Google Scholar 

  63. T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)

    Article  Google Scholar 

  64. Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon. 3, 2022–2029 (2016)

    Article  CAS  Google Scholar 

  65. M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361–4378 (2017)

    Article  CAS  Google Scholar 

  66. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  CAS  Google Scholar 

  67. M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, X. Luo, Broadband anomalous reflection based on low-Q gradient meta-surface. AIP Adv. 3, 052136 (2013)

    Article  Google Scholar 

  68. Y.-W. Huang, H.W.H. Lee, R. Sokhoyan, R.A. Pala, K. Thyagarajan, S. Han, D.P. Tsai, H.A. Atwater, Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016)

    Article  CAS  Google Scholar 

  69. P.P. Iyer, M. Pendharkar, J.A. Schuller, Electrically reconfigurable metasurfaces using heterojunction resonators. Adv. Opt. Mater. 4, 1582–1588 (2016)

    Article  CAS  Google Scholar 

  70. Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016)

    Article  CAS  Google Scholar 

  71. C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, J. Tian, Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces. Adv. Opt. Mater. 6, 1701047 (2018)

    Google Scholar 

  72. M.C. Sherrott, P.W.C. Hon, K.T. Fountaine, J.C. Garcia, S.M. Ponti, V.W. Brar, L.A. Sweatlock, H.A. Atwater, Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017)

    Article  CAS  Google Scholar 

  73. G. Kafaie Shirmanesh, R. Sokhoyan, R.A. Pala, H.A. Atwater, Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018)

    Google Scholar 

  74. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008)

    Article  CAS  Google Scholar 

  75. M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)

    Article  Google Scholar 

  76. C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photon. Rev. 10, 986–994 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Radiation Engineering and Optical Phased Array. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_14

Download citation

Publish with us

Policies and ethics