Skip to main content

Structural Colors and Meta-holographic Display

  • Chapter
  • First Online:
Engineering Optics 2.0
  • 2302 Accesses

Abstract

As a picture is worth a thousand words, display technology simplifies information sharing. In this chapter, the developments of structural colors based on various subwavelength structures are introduced, with some special attentions paid on the polarization-encoded and dynamic structural colors. Then, the meta-holography with polarization-independent/dependent, full-color, three-dimensional, high-efficiency, and broadband properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isaac Newton. https://en.wikipedia.org/wiki/Isaac_Newton

  2. Pigment. https://en.wikipedia.org/wiki/Pigment

  3. J.J. Cowan, Aztec surface-relief volume diffractive structure. J. Opt. Soc. Am. A 7, 1529–1544 (1990)

    Article  Google Scholar 

  4. P. Jiang, D.W. Smith, J.M. Ballato, S.H. Foulger, Multicolor pattern generation in photonic bandgap composites. Adv. Mater. 17, 179–184 (2005)

    Article  CAS  Google Scholar 

  5. Z.-Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Structural color and the lotus effect. Angew. Chem.-Int. Ed. 42, 894–897 (2003)

    Article  CAS  Google Scholar 

  6. S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008)

    Article  Google Scholar 

  7. I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup—a Roman nanotechnology. Gold Bull. 40, 270–277 (2007)

    Article  CAS  Google Scholar 

  8. M.L. Brongersma, Introductory lecture: nanoplasmonics. Faraday. Discuss. 178, 9–36 (2015)

    Article  CAS  Google Scholar 

  9. T. Xu, H. Shi, Y.-K. Wu, A.F. Kaplan, J.G. Ok, L.J. Guo, Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011)

    Article  CAS  Google Scholar 

  10. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  11. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  Google Scholar 

  12. C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)

    Article  CAS  Google Scholar 

  13. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, Y. Koide, Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011)

    Article  Google Scholar 

  14. C. Wang, C. Du, X. Luo, Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film. Phys. Rev. B 74, 245403 (2006)

    Article  Google Scholar 

  15. C. Wang, C. Du, Y. Lv, X. Luo, Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves. Opt. Express 14, 5671–5681 (2006)

    Article  Google Scholar 

  16. T. Xu, Y.-K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010)

    Google Scholar 

  17. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, H. Duan, Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 4, 1196–1202 (2016)

    Article  CAS  Google Scholar 

  18. W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, D.-Y. Choi, Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photonics Rev. 11, 1600285 (2017)

    Google Scholar 

  19. M. Song, X. Li, M. Pu, Y. Guo, K. Liu, H. Yu, X. Ma, X. Luo, Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics 7, 323 (2018)

    Article  Google Scholar 

  20. X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P.-Y. Chen, G.S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, X. Chen, Polarization encoded color image embedded in a dielectric metasurface. Adv. Mater. 30, 1707499 (2018)

    Article  Google Scholar 

  21. S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 5, 1600829 (2017)

    Article  Google Scholar 

  22. M.L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, N.J. Halas, Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett. 17, 6034–6039 (2017)

    Article  CAS  Google Scholar 

  23. T. Xu, E.C. Walter, A. Agrawal, C. Bohn, J. Velmurugan, W. Zhu, H.J. Lezec, A.A. Talin, High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7, 10479 (2016)

    Article  CAS  Google Scholar 

  24. Y. Gao, C. Huang, C. Hao, S. Sun, L. Zhang, C. Zhang, Z. Duan, K. Wang, Z. Jin, N. Zhang, A.V. Kildishev, C.-W. Qiu, Q. Song, S. Xiao, Lead halide perovskite nanostructures for dynamic color display. ACS Nano 12, 8847–8854 (2018)

    Article  CAS  Google Scholar 

  25. Q.-T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, Y. Li, Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt. Express 24, 16309–16319 (2016)

    Article  CAS  Google Scholar 

  26. K.E. Chong, L. Wang, I. Staude, A.R. James, J. Dominguez, S. Liu, G.S. Subramania, M. Decker, D.N. Neshev, I. Brener, Y.S. Kivshar, Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 3, 514–519 (2016)

    Article  CAS  Google Scholar 

  27. K. Huang, H. Liu, F.J. Garcia-Vidal, M. Hong, B. Luk/’yanchuk, J. Teng, C.-W. Qiu, Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015)

    Google Scholar 

  28. X. Zhang, X. Li, J. Jin, M. Pu, X. Ma, J. Luo, Y. Guo, C. Wang, X. Luo, Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale 10, 9304–9310 (2018)

    Article  CAS  Google Scholar 

  29. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, S. Zhang, Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031–5036 (2014)

    Article  CAS  Google Scholar 

  30. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 392, 45–57 (1984)

    Article  Google Scholar 

  31. X. Zhang, M. Pu, J. Jin, X. Li, P. Gao, X. Ma, C. Wang, X. Luo, Helicity multiplexed spin-orbit interaction in metasurface for colorized and encrypted. Ann. Phys. 529, 1700248 (2017)

    Article  Google Scholar 

  32. Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging Geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016)

    Google Scholar 

  33. F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)

    Google Scholar 

  34. J.P. Balthasar Mueller, N.A. Rubin, R.C. Devlin, B. Groever, F. Capasso, Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017)

    Google Scholar 

  35. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27, 1704295 (2017)

    Article  Google Scholar 

  36. Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G.P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, X. Li, Diatomic metasurface for vectorial holography. Nano Lett. 18, 2885–2892 (2018)

    Article  CAS  Google Scholar 

  37. X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes. Nanoscale 9, 1409–1415 (2017)

    Article  CAS  Google Scholar 

  38. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)

    Article  Google Scholar 

  39. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, S. Zhang, Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015)

    Article  CAS  Google Scholar 

  40. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo, Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)

    Article  CAS  Google Scholar 

  41. X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)

    Article  Google Scholar 

  42. A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)

    Google Scholar 

  43. M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)

    Article  Google Scholar 

  44. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young's interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Google Scholar 

  45. J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, N. Liu, Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018)

    Google Scholar 

  46. G. Yoon, D. Lee, K.T. Nam, J. Rho, “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 12, 6421–6428 (2018)

    Article  CAS  Google Scholar 

  47. K.T. Lim, H. Liu, Y. Liu, J.K. Yang, Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10, 25 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Structural Colors and Meta-holographic Display. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_11

Download citation

Publish with us

Policies and ethics