Skip to main content

Introduction to Engineering Optics 2.0

  • Chapter
  • First Online:
Engineering Optics 2.0
  • 2262 Accesses

Abstract

In recent years, modern engineering optics has entered a new phase termed Engineering Optics 2.0 (EO 2.0) and broken the fundamental limitations of classic optical laws with respect to many aspects of optics. This change is enabled by the rapid development of micro-/nanofabrication and characterization techniques, as well as the advancement of electronic computers and numerical simulation algorithms. In this chapter, we give a detailed introduction of the background and progress of this new area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Iizuka, Engineering Optics, 3rd ed. (Springer, 2008)

    Google Scholar 

  2. X. Luo, Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018)

    Article  CAS  Google Scholar 

  3. X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 25, 1804680 (2019)

    Google Scholar 

  4. A. Nedelcu, V. Guériaux, A. Berurier, N. Brière de l’Isle, O. Huet, Multispectral and polarimetric imaging in the LWIR: Intersubband detectors as a versatile solution. Infrared Phys. Technol. 59, 125–132 (2013)

    Google Scholar 

  5. X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)

    Article  CAS  Google Scholar 

  6. Willebrord Snellius, https://commons.wikimedia.org/wiki/File:Willebrord_Snellius.jpg

  7. Pierre de Fermat, https://commons.wikimedia.org/wiki/File:Pierre_de_Fermat.jpg

  8. Thomas Young, https://commons.wikimedia.org/wiki/File:LifeOfThomasYoung1855PeacockG.jpg

  9. Augustin Fresnel, https://commons.wikimedia.org/wiki/File:Augustin_Fresnel.jpg

  10. James Clerk Maxwell, https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell.png

  11. Gustav Robert Kirchhoff, https://commons.wikimedia.org/wiki/File:Gustav_Robert_Kirchhoff.jpg

  12. Ernst Abbe, https://commons.wikimedia.org/wiki/File:Ernst_Abbe.jpg

  13. Max Planck, https://commons.wikimedia.org/wiki/File:Max_Planck_1933.jpg

  14. Albert Einstein, https://commons.wikimedia.org/wiki/File:Albert_Einstein_(Nobel).png

  15. D.B. Swinson, Chinese “magic” mirrors. Phys. Teach. 30, 295–299 (1992)

    Article  Google Scholar 

  16. R.K. Temple, The Genius of China: 3,000 Years of Science, Discovery, and Invention (Inner Traditions Rochester, VT, 2007)

    Google Scholar 

  17. E.S. Barr, Men and milestones in optics II. Thomas Young. Appl. Opt. 2, 639–647 (1963)

    Article  Google Scholar 

  18. R.P. Crease, The most beautiful experiment. Phys. World 15, 19 (2002)

    Google Scholar 

  19. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999)

    Google Scholar 

  20. M. Pu, C. Wang, Y. Wang, X. Luo, Subwavelength electromagnetics below the diffraction limit. Acta Phys. Sin. 66, 144101 (2017)

    Google Scholar 

  21. F. Qin, M. Hong, Breaking the diffraction limit in far field by planar metalens. Sci. China Phys. Mech. Astron. 60, 044231 (2017)

    Article  Google Scholar 

  22. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Basic Books, 1963)

    Google Scholar 

  23. H. Gross, Fundamentals of Technical Optics (Wiley, 2005)

    Google Scholar 

  24. M. Freebody, Great strides in optical fabrication. Photonics Spectra 10, 42–47 (2016)

    Google Scholar 

  25. R. Williamson, Field Guide to Optical Fabrication (SPIE, 2011)

    Google Scholar 

  26. F.Z. Fang, X.D. Zhang, A. Weckenmann, G.X. Zhang, C. Evans, Manufacturing and measurement of freeform optics. CIRP Ann. 62, 823–846 (2013)

    Article  Google Scholar 

  27. L. Rayleigh, XXXI. Investigations in optics, with special reference to the Spectroscope. Philos. Mag. Ser. 5(8), 261–274 (1879)

    Article  Google Scholar 

  28. L.W. Chen, Y. Zhou, M.X. Wu, M.H. Hong, Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1, 170001 (2018)

    Google Scholar 

  29. R. Gilmozzi, Giant telescopes of the future. Sci. Am. 5, 66–71 (2006)

    Google Scholar 

  30. H.P. Stahl, Survey of cost models for space telescopes. Opt. Eng. 49, 053005 (2010)

    Article  Google Scholar 

  31. M. Totzeck, W. Ulrich, A. Gohnermeier, W. Kaiser, Semiconductor fabrication: pushing deep ultraviolet lithography to its limits. Nat. Photonics 1, 629–631 (2007)

    Article  CAS  Google Scholar 

  32. M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914)

    Google Scholar 

  33. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)

    Article  Google Scholar 

  34. Y. Wang, X. Ma, X. Li, M. Pu, X. Luo, Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 1, 180013 (2018)

    Google Scholar 

  35. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  CAS  Google Scholar 

  36. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)

    Article  CAS  Google Scholar 

  37. X. Ma, M. Pu, X. Li, Y. Guo, X. Luo, All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv. 2, 180023 (2019)

    Google Scholar 

  38. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, J.-R. Lai, Biologically inspired achromatic waveplates for visible light. Nat. Commun. 2, 363 (2011)

    Article  CAS  Google Scholar 

  39. K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616 (1996)

    Article  CAS  Google Scholar 

  40. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)

    Article  CAS  Google Scholar 

  41. X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015)

    Google Scholar 

  42. A.I. Lvovsky, Fresnel equations, in Encyclopedia of Optical Engineering (Taylor & Francis, 2007), pp. 1–6

    Google Scholar 

  43. F. Bouchard, H. Mand, M. Mirhosseini, E. Karimi, R.W. Boyd, Achromatic orbital angular momentum generator. New J. Phys. 16, 123006 (2014)

    Article  Google Scholar 

  44. M. Vollmer, K.-P. Mollmann, Infrared thermal imaging: fundamentals, research and applications (Wiley-VCH Verlag GmbH & Co, KGaA, 2010)

    Book  Google Scholar 

  45. M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, X. Luo, Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)

    Article  CAS  Google Scholar 

  46. S. Fan, Photovoltaics: an alternative “Sun” for solar cells. Nat. Nanotechnol. 9, 92–93 (2014)

    Article  CAS  Google Scholar 

  47. X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)

    Article  CAS  Google Scholar 

  48. G.P. Williams, Filling the THz gap—high power sources and applications. Rep. Prog. Phys. 69, 301 (2006)

    Article  Google Scholar 

  49. Committee on Nanophotonics Accessibility and Applicability, National Research Council, Nanophotonics: Accessibility and Applicability (National Academies Press, 2008).

    Google Scholar 

  50. R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  51. X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)

    Article  Google Scholar 

  52. V.-C. Su, C.H. Chu, G. Sun, D.P. Tsai, Advances in optical metasurfaces: fabrication and applications [Invited]. Opt. Express 26, 13148–13182 (2018)

    Article  CAS  Google Scholar 

  53. A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018)

    Article  CAS  Google Scholar 

  54. T. Hu, C.-K. Tseng, Y.H. Fu, Z. Xu, Y. Dong, S. Wang, K.H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, Y. Gu, Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018)

    Article  CAS  Google Scholar 

  55. U.D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, E.-B. Kley, High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 109, 789–796 (2012)

    Article  CAS  Google Scholar 

  56. E.H. Synge, A suggested model for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 6, 356–362 (1928)

    Article  CAS  Google Scholar 

  57. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008)

    Article  CAS  Google Scholar 

  58. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  59. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  60. X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)

    Article  Google Scholar 

  61. B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)

    Article  CAS  Google Scholar 

  62. X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)

    Article  Google Scholar 

  63. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  CAS  Google Scholar 

  64. M. Rahmani, G. Leo, I. Brener, A. Zayats, S. Maier, C. De Angelis, H. Tan, V. F. Gili, F. Karouta, R. Oulton, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)

    Google Scholar 

  65. H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)

    Article  Google Scholar 

  66. T. Xu, C. Du, C. Wang, X. Luo, Subwavelength imaging by metallic slab lens with nanoslits. Appl. Phys. Lett. 91, 201501 (2007)

    Article  CAS  Google Scholar 

  67. L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009)

    Article  CAS  Google Scholar 

  68. T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)

    Article  Google Scholar 

  69. J. Yan, Y. Guo, M. Pu, X. Li, X. Ma, X. Luo, High-efficiency multi-wavelength metasurface with complete independent phase control. Chin. Opt. Lett. 16, 050003 (2018)

    Article  Google Scholar 

  70. Y. Guo, J. Yan, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Ultra-wideband manipulation of electromagnetic waves by bilayer scattering engineered gradient metasurface. RSC Adv. 8, 13061–13066 (2018)

    Article  CAS  Google Scholar 

  71. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, X. Luo, Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett. 92, 101501 (2008)

    Article  CAS  Google Scholar 

  72. J. Sun, X. Wang, T. Xu, Z.A. Kudyshev, A.N. Cartwright, N.M. Litchinitser, Spinning light on the nanoscale. Nano Lett. 14, 2726–2729 (2014)

    Article  CAS  Google Scholar 

  73. L. Lin, X.M. Goh, L.P. McGuinness, A. Roberts, Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett. 10, 1936 (2010)

    Article  CAS  Google Scholar 

  74. S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2013)

    Article  CAS  Google Scholar 

  75. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998)

    Article  CAS  Google Scholar 

  76. D.T. Moore, Gradient-index optics-A review. Appl. Opt. 19, 1035–1038 (1980)

    Article  CAS  Google Scholar 

  77. J. Evans, M. Rosenquist, “F = ma” optics. Am. J. Phys. 54, 876–883 (1986)

    Article  Google Scholar 

  78. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  CAS  Google Scholar 

  79. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)

    Article  CAS  Google Scholar 

  80. Y. Xu, Y. Fu, H. Chen, Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016)

    Article  CAS  Google Scholar 

  81. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)

    Article  CAS  Google Scholar 

  82. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    Article  CAS  Google Scholar 

  83. F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012)

    Article  CAS  Google Scholar 

  84. F. Capasso, The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953 (2018)

    Article  Google Scholar 

  85. P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017)

    Article  CAS  Google Scholar 

  86. G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)

    Google Scholar 

  87. S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)

    Google Scholar 

  88. D.C. Flanders, Submicrometer periodicity gratings as artificial anisotropic dielectrics. Appl. Phys. Lett. 42, 492–494 (1983)

    Article  CAS  Google Scholar 

  89. P. Lalanne, J.-P. Hugonin, High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. J. Opt. Soc. Am. A 15, 1843–1851 (1998)

    Article  Google Scholar 

  90. G. Nordin, P. Deguzman, Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. Opt. Express 5, 163–168 (1999)

    Article  CAS  Google Scholar 

  91. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)

    Article  CAS  Google Scholar 

  92. Y. Guo, L. Yan, W. Pan, B. Luo, Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface. Opt. Express 23, 27566–27575 (2015)

    Article  CAS  Google Scholar 

  93. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo, Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)

    Article  CAS  Google Scholar 

  94. Y. Guo, L. Yan, W. Pan, L. Shao, Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion. Sci. Rep. 6, 30154 (2016)

    Article  CAS  Google Scholar 

  95. A.G. Fox, An adjustable wave-guide phase changer. Proc. IRE 35, 1489–1498 (1947)

    Article  Google Scholar 

  96. S. Pancharatnam, Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. 44, 247–262 (1956)

    Article  Google Scholar 

  97. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 392, 45–57 (1984)

    Article  Google Scholar 

  98. R. Bhandari, Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997)

    Article  Google Scholar 

  99. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Methodologies for on-demand dispersion engineering of meta-surface waves. Adv. Opt. Mater. (2019)

    Google Scholar 

  100. X. Luo, D. Tsai, M. Gu, M. Hong, Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion (Chem. Soc, Rev, 2019)

    Google Scholar 

  101. T. Xu, Y.-K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010)

    Google Scholar 

  102. S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018)

    Article  CAS  Google Scholar 

  103. Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)

    Article  CAS  Google Scholar 

  104. X. Luo, M. Pu, X. Li, X. Ma, Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 6, e16276 (2017)

    Article  CAS  Google Scholar 

  105. Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)

    Article  Google Scholar 

  106. H.A. Atwater, The promise of plasmonics. Sci. Am. 296, 56–62 (2007)

    Article  CAS  Google Scholar 

  107. D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014)

    Article  CAS  Google Scholar 

  108. A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015)

    Article  CAS  Google Scholar 

  109. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354, aag2472 (2016)

    Google Scholar 

  110. S. Jahani, Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016)

    Article  CAS  Google Scholar 

  111. Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2019)

    Google Scholar 

  112. C.A. Dirdal, J. Skaar, Superpositions of Lorentzians as the class of causal functions. Phys. Rev. A 88, 033834 (2013)

    Article  CAS  Google Scholar 

  113. Z. Zhao, M. Pu, Y. Wang, X. Luo, The generalized laws of refraction and reflection. Opto-Electron. Eng. 44, 129–139 (2017)

    Google Scholar 

  114. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)

    Article  CAS  Google Scholar 

  115. H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W.’t Hooft, D. Lenstra, E.R. Eliel, Plasmon-assisted two-slit transmission: young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005)

    Google Scholar 

  116. X. Luo, Catenary Optics (Springer Singapore, 2019)

    Google Scholar 

  117. Nature Milestones: Photons, www.nature.com/milestones/photons

  118. A. Levin, R. Fergus, F. Durand, W.T. Freeman, Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 70 (2007)

    Article  Google Scholar 

  119. Y. Altmann, S. McLaughlin, M.J. Padgett, V.K. Goyal, A.O. Hero, D. Faccio, Quantum-inspired computational imaging. Science 361, eaat2298 (2018)

    Google Scholar 

  120. A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Introduction to Engineering Optics 2.0. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_1

Download citation

Publish with us

Policies and ethics