Skip to main content

Patterns Across the Years—Singapore Learners’ Epistemology

  • Chapter
  • First Online:
Mathematics Education in Singapore

Part of the book series: Mathematics Education – An Asian Perspective ((MATHEDUCASPER))

  • 1542 Accesses

Abstract

Pattern has a prominent position in the Singapore mathematics curriculum. This chapter reports how learners across the grades thought about patterns, how they recognised patterns, and how they constructed rules to describe the structure underpinning specific patterns. The corpus of data came from four studies. Primary children participated in the first three studies: Age and Individual Differences, Forward and Backward Rule, Colour Contrast whilst Secondary 2 students participated in the fourth, Strategies and Justifications in Mathematical Generalization. All these studies used the mathematics curriculum to design grade-specific mathematical tasks. In general, two types of pattern tasks were used, number patterns presented in tandem with figures and figural patterns. Data with primary children were collected using paper-and-pencil task and clinical interviews were used to collaborate their responses. The fourth study analysed the written responses of the secondary students to paper-and-pencil task. These studies found that learners focused on the surface features to arrive at a rule to describe these number patterns. In the colour-contrast study, compared with monochromatic presentation, those using two colours encouraged learners to present possible general rules. The more able academic stream secondary students were able to arrive at general rules for linear figural patterns. However, all students across the academic spectrum were challenged by quadratic patterns. Findings from the four suggest that it important for teachers to know how to move learners to look for the structure underpinning patterns, numerical and figural, and to construct the all-important general rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amit, M., & Neria, D. (2008). Rising to the challenge: Using generalization in pattern problems to unearth the algebraic skills of talented pre-algebra students. Zentralblatt für Didaktik der Mathematik, 40, 111–129.

    Article  Google Scholar 

  • Blanton, M. L., & Kaput, J. J. (2004). Elementary grades students’ capacity for functional thinking. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 135–142). Bergen, Norway.

    Google Scholar 

  • Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Ng, F. F., & Schmittau, J. (2005). The development of students’ algebraic thinking in earlier grades: A cross-cultural comparative perspective. Zentralblatt für Didaktik der Mathematik, 37(1), 5–15.

    Article  Google Scholar 

  • Chua, B. L., & Hoyles, C. (2009). Generalisation and perceptual agility: How teachers fared in a generalising problem. In Proceedings of the British Society for Research in Learning Mathematics (BSRLM) Conference (pp. 13–18). Bristol, The United Kingdom: BSRLM.

    Google Scholar 

  • Chua, B. L., & Hoyles, C (2011). The interplay between format of pattern display and expressing generality. In B. Ubuz (Ed.) Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (p. 281). Ankara, Turkey: PME.

    Google Scholar 

  • Chua, B. L., & Hoyles, C. (2012). The effect of different pattern formats on secondary two students’ ability to generalise. In T. Y. Tso (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol 2, pp. 155–162). Taipei, Taiwan: PME.

    Google Scholar 

  • Chua, B. L., & Hoyles, C. (2013). Rethinking and researching task design in pattern generalisation. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol 2, pp. 193–200). Kiel, Germany: PME.

    Google Scholar 

  • Chua, B. L., & Hoyles, C. (2014). Generalisation of linear figural patterns in Secondary School. The Mathematics Educator, 15(2), 1–30.

    Google Scholar 

  • Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers grades 6–10. Portsmouth: NH: Heinemann.

    Google Scholar 

  • Fosnot, C. T., & Jacob, B. (2010). Young mathematicians at work: Constructing algebra. Reston, Virginia: NCTM.

    Google Scholar 

  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (p. 5–17). Reston, VA: NCTM.

    Google Scholar 

  • Küchemann, D. (2010). Using patterns generically to see structure. Pedagogies: An International Journal, 5(3), 233–250.

    Article  Google Scholar 

  • Lee, K., Ng, S. F., & Bull, R. (2017). Learning and solving more complex problems: The roles of working memory, updating, and prior skills for general mathematical achievement and algebra. In D. C. Geary, D. B. Berch, R. Ochsendorf, & K. M. Koepke (Eds.), Acquisition of complex arithmetic skills and higher-order Mathematics concepts (pp. 197–220). http://dx.doi.org/10.1016/B978-0-12-805086-6.0009-6.

    Chapter  Google Scholar 

  • Mason, J. (1990). Supporting primary Mathematics: Algebra. Milton Keynes, UK Open University: The Open University.

    Google Scholar 

  • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee, (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Mason, J. (2008). Making use of children’s powers to produce algebraic thinking. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 57–94). New York: Lawrence Erlbaum Associates.

    Google Scholar 

  • Mason, J., Stephens, M., & Watson, A. (2009). Appreciating Mathematical structures for all. Mathematics Education Research Journal, 21(2), 10–32.

    Article  Google Scholar 

  • Moses, B. (Ed.). (1999). Algebraic thinking. Grades K-12. Reston, VA: NCTM.

    Google Scholar 

  • Ng, S. F. (2018). Function tasks, input, output and the predictive rule is: How some Singapore primary children construct the rule. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds the global evolution of an emerging field of research and practice. Springer International Publishing AG.

    Google Scholar 

  • Radford, L. G. (2001). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives in school algebra (pp. 13–36). Dordrecht: The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Rivera, F. D., & Becker, J. R. (2005). Figural and numerical modes of generalising in algebra. Mathematical Teaching in the Middle School, 11(4), 198–203.

    Google Scholar 

  • Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. Coxford (Ed.), Ideas of algebra: K-12 (pp. 8–19). Reston, VA: NCTM.

    Google Scholar 

  • Van De Walle, J., & Bay-Williams, J. M. (Eds.). (2014). Elementary and middle school Mathematics: Teaching developmentally (8th ed.). Essex, UK: Pearson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee Fong Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, S.F., Chua, B.L. (2019). Patterns Across the Years—Singapore Learners’ Epistemology. In: Toh, T., Kaur, B., Tay, E. (eds) Mathematics Education in Singapore. Mathematics Education – An Asian Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-13-3573-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3573-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3572-3

  • Online ISBN: 978-981-13-3573-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics