Skip to main content

Phytoremediation Strategies on Heavy Metal Removal

  • Chapter
  • First Online:
Water and Wastewater Treatment Technologies

Abstract

Over many decades, treatment and reuse of wastewater has been a key research area for environmentalists. Scientists have succeeded in the usage of wastewater for agricultural purposes. However, the discharge of effluent from the industries led to a constant increase in effluent concentration and adversely affects the health of human, plants, and animals. Phytoremediation is one of the wastewater treatment technologies used to eradicate the contaminants from marine and soil environment without disturbing the environment. The ability of plants roots to accumulate, translocate, and degrade the contaminants from environment plays a major role in phytoremediation process. Phytoremediation follows mainly five mechanisms which are phytoextraction, phytostabilization, phytodegradation, phytovolatilization, and phytofiltration. Aquatic or terrestrial plants are used to accumulate, immobilize, or degrade the contaminants from air, soil, and water. It is an inexpensive technique and it could be applied to large contaminated areas without any significant damage to environment. Treatment of contaminated site would take long period is one of the few limitations to overcome. Chelating agents are used to enhance the accumulation ability of plants. Inorganic chelating agents are more aggressive and enhance high accumulation of contaminants. To protect the environment and to enhance the accumulation ability of plant, organic acids are used as chelating agents. The success of phytoremediation is determined not only by accumulation ability but also by the bioavailability of contaminants in environment and plant. This chapter discusses the potential mechanisms and strategies available to widen the application of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbalagan S, Ponnusamy SK, Selvam SRP, Sankaranarayan A, Dutta A (2016) Influence of ultrasonication on preparation of novel material for heavy metal removal from wastewater. Korean J Chem Eng 33(9):1–16

    Article  Google Scholar 

  • Anudechakul C, Vangnai AS, Ariyakanon N (2015) Removal of Chlorpyrifos by water Hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. Int J Phytoremediation 17(7):678–685

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  Google Scholar 

  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation 18(1):25–32

    Article  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Fimmen RL, Yates BJ, Lal V, Randall P (2012) Phytoremediation of mercury—and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). Int J Phytoremediation 14(2):142–161

    Article  Google Scholar 

  • Chen YC, Chiang GL, Lo SL (2012) Effect of pollutant concentrations on growth characteristics of macrophytes in a constructed wetland treating municipal combined sewage. Desalin Water Treat 44(1–3):289–295

    Article  CAS  Google Scholar 

  • Das S, Mazumdar K (2016) Phytoremediation potential of a novel fern, Salviniacucullata, Roxb. Ex Bory, to pulp and paper mill effluent: physiological and anatomical response. Chemosphere 163:62–72

    Article  CAS  Google Scholar 

  • Queiroz RCS, Andrade RS, Dantas IR, Ribeiro VS, Neto LBR, Neto JAA (2017) Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents. Int J Phytoremediation 19(8):781–788

    Article  Google Scholar 

  • Deng L, Geng M, Zhu D (2012) Bioresource technology effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhorniacrassipes. Bioresour Technol 107:41–45

    Article  CAS  Google Scholar 

  • Ebrahimi M (2016) Enhanced phytoremediation capacity of Chenopodium album L. grown on Pb-contaminated soils using EDTA and reduction of leaching risk. Soil Sediment Contam. 25(6):652–667

    Article  CAS  Google Scholar 

  • Falusi BA, Odedokun OA, Abubakar A, Agoh A (2016) Effects of dumpsites air pollution on the ascorbic acid and chlorophyll contents of medicinal plants. Cogent Environ Sci 2(1):1–27

    Article  Google Scholar 

  • Feng W, Xiao K, Zhou W (2017) Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour Technol 223:287–295

    Article  CAS  Google Scholar 

  • Ganzenko O, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21(14):8493–8524

    Article  CAS  Google Scholar 

  • Gao J, Dang H, Liu L, Jiang L (2014) Remediation effect of contaminated water by water hyacinth (Eichhorniacrassipes (Mart.) Solms). Desalin Water Treat. 1–8

    Google Scholar 

  • García-Mercadoa HD, Fernándezb G, Garzón-Zúñigac MA, Durán-Domínguez-de-Bazúaa M del C (2017) Remediation of mercury-polluted soils using artificial wetlands. Int J Phytoremediation 19 (1):3–13

    Article  Google Scholar 

  • Gomes MAC, Hauser-Davis RA, Suzuki MS, Vitória AP (2017) Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Saf (140):55–64

    Article  CAS  Google Scholar 

  • Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci Total Environ 571:275–291

    Article  CAS  Google Scholar 

  • Jain S, Singh A, Khare P (2017) Toxicity assessment of Bacopa monnieri L. grown in biochar amended extremely acidic coal mine spoils. Ecol Eng. 108 (August):211–219

    Article  Google Scholar 

  • Ling T, Gao Q, Du H, Zhao Q, Ren J (2017) Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem Speciat Bioavailab. 29 (1):216–221

    Article  CAS  Google Scholar 

  • Luo Y, Guo W, Ngo HH (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Article  Google Scholar 

  • Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265

    Article  Google Scholar 

  • Ojoawo SO, Udayakumar G, Naik P (2015) Phytoremediation of phosphorus and nitrogen with canna x generalis reeds in domestic wastewater through NMAMIT constructed wetland. Aquat. Procedia 4:349–356

    Article  Google Scholar 

  • Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408(24):6062–6069

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Sethunathan N (2010) The impacts of environmental pollutants on microalgae and cyanobacteria. Impacts Environ Pollutants Microalgae Cyanobacteria 3389:37–41

    Google Scholar 

  • Riaz G, Tabinda AB, Iqbal S (2017) Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. Int J Phytoremediation 19(10):894–898

    Article  CAS  Google Scholar 

  • Rodriguez-Hernandez MC, De la-Cruz RF, Leyva E, Navarro-Tovar G (2017) Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes. Chemosphere 173:190–198

    Article  CAS  Google Scholar 

  • Romero-Hernández JA, Amaya-Chávez A, Balderas-Hernández P, Roa-Morales G, González-Rivas N, Balderas-Plata MÁ (2017) Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes. Int J Phytoremediation 19(3):239–245

    Article  Google Scholar 

  • Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediation 19(1):87–96

    Article  CAS  Google Scholar 

  • SanmugaPriya E, Senthamil Selvan P (2017) Water hyacinth (Eichhornia crassipes)—an efficient and economic adsorbent for textile effluent treatment—a review. Arab J Chem 10:S3548–S3558

    Article  CAS  Google Scholar 

  • Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S (2017) The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundodonax L. Int J Phytoremediation 19(4):360–370

    Article  CAS  Google Scholar 

  • Saxena DK, Saiful-Arfeen M (2009) Effect of Cu and Cd on oxidative enzymes and chlorophyll content of moss Racomitrium crispulum. Taiwania 54(4):365–374

    Google Scholar 

  • Shahid M, Austruy A, Echevarria G (2014) EDTA-Enhanced Phytoremediation of heavy metals: a review. Soil Sediment Contam 23(4):389–416

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26(2):148–166

    Article  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017) Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopusdidymus (L.) Brassicaceae. Int J Phytoremediation 19(4):360–370

    Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant. Bacopa monnieri L. Chemosphere. 62(2):233–246

    Article  CAS  Google Scholar 

  • Singh NK, Raghubanshi AS, Upadhyay AK, Rai UN (2016) Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal. India. Ecotoxicol Environ Saf 130:224–233

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside—a content in medicinal plant Bacopa monnieri L. Chemosphere 62(8):1340–1350

    Article  CAS  Google Scholar 

  • Sung K, Lee GJ, Munster C (2015) Effects of Eichhorniacrassipes and Ceratophyllum demersum on soil and water environments and nutrient removal in wetland microcosms. Int J Phytoremediation 17(10):936–944

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayalakshmi N, Geetha N (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalyphaindica L. under lead stress. Chemosphere 171:544–553

    Article  CAS  Google Scholar 

  • Verma A, Bharagava RN, Kumar V (2016) Role of macrophytes in heavy metal removal through rhizofiltration in aquatic ecosystem.4(10):15–20

    Google Scholar 

  • Zhang X-B, Liu P, Yang Y-S, Chen W-R (2007) Phytoremediation of urban waste-water by model wetlands with ornamental hydrophytes. J. Environ. Sci 19:902–909

    Article  CAS  Google Scholar 

  • Zhou X, Li Z, Zhao R (2016) Experimental comparisons of three submerged plants for reclaimed water purification through nutrient removal. Desalin Water Treat 57(26):12037–12046

    Article  CAS  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R, Ghanem DA (2001) Chromium phytoaccumulation from solution by selected hydrophytes. Int J Phytoremediation 3(3):335–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthulingam Seenuvasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dineshkumar, M., Seenuvasan, M., Sarojini, G. (2019). Phytoremediation Strategies on Heavy Metal Removal. In: Bui, XT., Chiemchaisri, C., Fujioka, T., Varjani, S. (eds) Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_5

Download citation

Publish with us

Policies and ethics