Skip to main content

Removal of Organic Pollutants from Industrial Wastewaters Treated by Membrane Techniques

  • Chapter
  • First Online:
Water Conservation, Recycling and Reuse: Issues and Challenges
  • 1126 Accesses

Abstract

Water is the most commonly used resource in the world. The world’s supply of sanitary water is limited and exposed to contamination. Increasing demands for water are required for cultivation, manufacturing, and urban development, but these are more important to control than the distribution of limited freshwater resources. Various industries use water for diverse processes and then discharge it back into the surroundings. In recent times, researchers have focused on effluent treatment by a variety of processes with low costs and high removal efficiency. This study examines the removal of contamination from industrial effluents by a liquid membrane method. Water is recovered and reused through the liquid membrane, which has significant ecological benefits and decreases the effects of wastewater discharge on environmental water quality. Financial and environmental benefits have been recognized in this recently developed liquid membrane method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAHLM:

Bulk aqueous liquid membrane

BOHLM:

Bulk organic liquid membrane

DBL:

Diffusion boundary layer

FLM:

Flowing liquid membrane

HF:

Hollow fiber

HFCLM:

Hollow fiber liquid membrane

HFLM:

Hollow fiber liquid membrane

HLM:

Hybrid liquid membrane

L/L:

Liquid-liquid extraction

LM:

Liquid membrane

MBSE:

Membrane based solvent extraction

MBSS:

Membrane based solvent stripping

MHS:

Multi membrane hybrid system

O/W/O:

Oil-in-water-in-oil

References

  • Alpoguz HK, Memon S, Ersoz M, Yy’lmaz M (2004) Transport kinetics of Hg2Ăľ through bulk liquid membrane using calix[4]arene ketone derivative as carrier. Sep Sci Technol 39:799–810

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolourization of textile-dye-containing effluents. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Behrend O, Ax K, Schubert H (2000) Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem 7(2):77–85

    Article  CAS  Google Scholar 

  • Benjjar A, Hor M, Riri M, Eljaddi T, Kamal O, Lebrun L, Hlaibi M (2012) A new supported liquid membrane (SLM) with methyl cholate for facilitated transport of dichromate ions from mineral acids: parameters and mechanism relating to the transport. J Mater Environ Sci 3(5):826–839

    CAS  Google Scholar 

  • Chang SH, Teng TT, Norli I (2011) Optimization of Cu (II) Extraction from Aqueous Solutions by Soybean-Oil-Based Organic Solvent Using Response Surface Methodology. Water Air Soil Pollut 217:567–576

    Article  CAS  Google Scholar 

  • Chanukya BS, Rastogi NK (2013) Extraction of alcohol from wine and color extracts using liquid emulsion membrane. Sep Purif Technol 105(0):41–47

    Article  CAS  Google Scholar 

  • Chiou MS, Chuang GS (2006) Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 62:731–740

    Article  CAS  Google Scholar 

  • Eljaddi T, Kamal O, Benjjar A, Riri M, Elatmani MELH, Lebrun L, Hlaibi M (2014) New supported liquid membranes containing TBP and MC as carriers for the facilitated transport of cadmium ions from acidic mediums: Parameters and mechanism. J Mater Environ Sci 5(6):1994–1999

    CAS  Google Scholar 

  • Ersoz M (2007) Transport of mercury through liquid membranes containing calixarene carriers. Adv Colloid Interface Sci 134–135:96–104

    Article  Google Scholar 

  • Floury J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. Part B. Study of droplet break-up and recoalescence phenomena. Chem Eng Sci 59(6):1285–1294

    Article  CAS  Google Scholar 

  • Hassan AA, Victor K, Nidal H (2013) Hybrid ion exchange – Pressure driven membrane processes in water treatment: A review. Sep Purif Technol 116:253–264

    Article  Google Scholar 

  • Hou W, Papadopoulos KD (1996) Stability of waterin- oil-in-water type globules. Chem Eng Sci 51(22):5043–5051

    Article  CAS  Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22(7):1191–1202

    Article  CAS  Google Scholar 

  • Katzung BG (1987) Basic and clinical pharmacology, 3rd edn. Appleton and Lange, New York, pp 734–735

    Google Scholar 

  • Kemperman AJB (1995) Stabilization of supported liquid membranes, Ph.D. Thesis, University of Twente, The Netherlands

    Google Scholar 

  • Kemperman AJB, Bargeman D, Van den Boomgaard TH, Strathmann H (1996) Stability of supported liquid membranes: state of the art. Sep Sci Technol 31(20):2733–2762

    Article  CAS  Google Scholar 

  • Kemperman AJB, Rolevink HHM, Bargeman D, Van den Boomgaard TH, Strathmann H (1998) Stabilization of supported liquid membranes by interfacial polymerization top layers. J Membr Sci 138:43–55

    Article  CAS  Google Scholar 

  • Khan AA, Husain Q (2007) Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato (Solanum tuberosum) soluble and immobilized polyphenol oxidase. Bioresour Technol 98:1012–1019

    Article  CAS  Google Scholar 

  • Li NN (1968) Separating hydrocarbons with liquid membranes. US patent 3:410–794

    Google Scholar 

  • Li N, Cahn R, Naden D, Lai R (1983) Liquid membrane processes for copper extraction. Hydrometallurgy 9(3):277–305

    Article  CAS  Google Scholar 

  • Loiacono O, Drioli E, Molinari R (1986) Metal ion separation and concentration with supported liquid membranes. J Membr Sci 28:123–138

    Article  CAS  Google Scholar 

  • Ma M, He DS, Liao SH, Zeng Y, Xie QJ, Yao SZ (2002) Kinetic study of L-isoleucine transport through a liquid membrane containing di(2-ethylhexyl) phosphoric acid in kerosene. Anal Chim Acta 456:157

    Article  CAS  Google Scholar 

  • Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525

    Article  CAS  Google Scholar 

  • Matos M, Suarez MA, Gutierrez G, Coca J, Pazos C (2013) Emulsification with microfiltration ceramic membranes: A different approach to droplet formation mechanism. J Membr Sci 444(1):345–358

    Article  CAS  Google Scholar 

  • Mulder M (1991) Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Muthuraman G, Teng TT, Leh CP, Norli I (2009) Use of bulk liquid membrane for the removal of chromium (VI) from aqueous acidic solution with tri-n-butyl phosphate as a carrier. Desalination 249:884–890

    Article  CAS  Google Scholar 

  • Nath K (2008) Membrane separation processes. PHI Learning Pvt. Ltd, New Delhi

    Google Scholar 

  • Paugam MF, Smith BD (1993) Active transport of uridine through a liquid organic membrane mediated by phenylboronic acid and driven by a fluoride ion gradient. Tetrahedron Lett 34(23):3723–3726

    Article  CAS  Google Scholar 

  • Perrier-Cornet J, Marie P, Gervais P (2005) Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. J Food Eng 66(2):211–217

    Article  Google Scholar 

  • Pirkaramia A, Olya ME, Limaee Y (2013) Decolorization of azo dyes by photo electro adsorption process using polyaniline coated electrode. Prog Org Coat 76:682–688

    Article  Google Scholar 

  • Poots VJP, McKay G, Healy JJ (1976) The removal of acid dye from effluent using natural adsorbents-I peat. Water Res 10:1061–1066

    Article  CAS  Google Scholar 

  • Ravindra WG, Sunil AMK (2009) Studies on auramine dye adsorption on psidium guava petals. Korean J Chem Eng 26(1):102–107

    Article  Google Scholar 

  • Salem IA, El-maazawi M (2000) Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 41:1173–1180

    Article  CAS  Google Scholar 

  • Schlosser S (2000a) Membrane based processes with immobilized inter-face. In: Bako K, Gubicza L, Mulder M (eds) Integration of membrane processes into bioconversions. Kluwer Academic, New York, p 55

    Chapter  Google Scholar 

  • Schlosser S (2000b) Pertraction through liquid and polymeric membranes. In: Bako K, Gubicza L, Mulder M (eds) Integration of membrane processes into bioconversions. Kluwer Academic Publishers, New York

    Google Scholar 

  • Stephenson RJ, Sheldon JB (1996) Coagulation and precipitation of a mechanical pulping effluent-I. Removal of carbon, colour and turbidity. Water Res 30:781–792

    Article  CAS  Google Scholar 

  • Sun D, Duan X, Li W, Zhou D (1998) Demulsification of water-in-oil emulsion by using porous glass membrane. J Membr Sci 146(1):65–72

    Article  CAS  Google Scholar 

  • Talebi A, Teng TT, Abbas FMA, Norli I (2012) Optimization of nickel removal using liquid–liquid extraction and response surface methodology. Desalin Water Treat 47(1–3):334–340

    Article  CAS  Google Scholar 

  • Teng TT, Talebi A, Muthuraman G (2014) In: Hamidi A, Mojiri A (eds) Wastewater Engineering: Advanced Wastewater Treatment Systems. IJSR Books

    Google Scholar 

  • Tesch S, Schubert H (2002) Influence of increasing viscosity of the aqueous phase on the short-term stability of protein stabilized emulsions. J Food Eng 52(3):305–312

    Article  Google Scholar 

  • Van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid-phase bioreactors. Enzym Microb Technol 15:722–729

    Article  Google Scholar 

  • Wells AF (1993) Structual inorganic chemistry. Wydawnictwo Naukowo Techniczne, Warszawa

    Google Scholar 

  • WĂłdzki R (1997) Liquid membrane. Structure and mechanism of action, [in]: NarÄ™bska A. (red.): Membranes and membrane separation technology. Wydawnictwo Uniwersytetu MikoĹ‚aja Kopernika, ToruĹ„

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soniya, M., Muthuraman, G. (2019). Removal of Organic Pollutants from Industrial Wastewaters Treated by Membrane Techniques. In: Singh, R., Kolok, A., Bartelt-Hunt, S. (eds) Water Conservation, Recycling and Reuse: Issues and Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-3179-4_9

Download citation

Publish with us

Policies and ethics