Skip to main content

Design and Analysis of Piping and Support

  • Chapter
  • First Online:
Textbook of Seismic Design
  • 986 Accesses

Abstract

Piping systems are used to transport liquids, gases, slurries, or fine solid particles in process industries. The use of pipe was very common even in the prehistoric era, particularly bamboo pipes used for irrigation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

S :

Schedule number

Q :

Flow rate in \( {{m^{3} } \mathord{\left/ {\vphantom {{m^{3} } {hr}}} \right. \kern-0pt} {hr}} \)

V :

Average flow velocity

\( D_{\text{i}} \) :

Internal diameter of pipe in mm

\( P_{\text{a}} \) :

Pressure

\( t_{\text{m}} \) :

Thickness

L :

Developed length of piping (ft)

U :

Anchor to anchor distance (ft)

Y :

Total thermal movement to be absorbed(in)

W :

Weight per unit length of pipe

\( \Delta P \) :

Pressure drop in \( {\text{N}}/{\text{m}}^{2} \)

V :

Flow velocity in m/s

g :

Acceleration due to gravity

h :

Geodetic height in meter

\( \lambda \) :

Friction factor

\( \gamma \) :

Specific weight in \( {\text{kg}}/{\text{m}}^{3} \)

\( \zeta \) :

Coefficient of resistance

\( l_{0} \) :

It is the length of straight pipe which causes the same pressure drop as fitting

\( \theta \) :

Angle of deviation of bend

v :

Mean velocity in m/s

\( m^{.} \) :

Mass flow rate in kg/s

\( h_{\hbox{max} } \) :

Pressure rise in m

\( V_{\text{sw}} \) :

Velocity of sound in water under existing condition or velocity of pressure wave propagation

\( V_{{_{0} }} \) :

Normal velocity of flow before closure of valve

K :

Bulk modulus of fluid

t :

Thickness of pipe

d :

Diameter of pipe

P :

Design pressure (gauge)

\( D_{0} \) :

Outside diameter of pipe

t :

Nominal thickness of product

I :

Moment of inertia

\( M_{\text{i}} \) :

Resultant moment due to design mechanical loads

\( S_{m} \) :

Allowable design stress intensity value (\( {\text{N}}/{\text{m}}^{2} \))

\( P_{0} \) :

Range of service pressure

\( E_{\text{ab}} \) :

Average modulus of elasticity of two sides of gross structural discontinuity or material discontinuity at room temperature

\( T_{\text{a}} ,T_{\text{b}} \) :

Range of average temperature on side a or b of gross structural discontinuity

\( S_{\text{c}} \) :

Expansion stress

\( T_{\text{i}} \) :

Internal surface temperature

\( T_{0} \) :

External surface temperature

t:

Wall thickness

\( \upsilon \) :

Poisons ratio of material

\( \Delta T_{{_{1} }} \) :

Absolute value of the range of the temperature difference between outside surface and inside surface of pipe wall

\( \Delta T_{2} \) :

Absolute value of the range for that portion of the nonlinear thermal gradient through the wall thickness not included in \( \Delta T_{1} \)

R :

Bend radius

\( r_{\text{m}} \) :

Mean radius of pipe

S :

Maximum allowable stress for the material at design temperature

A :

Additional thickness to compensate for threading or grooving

\( t_{\text{n}} \) :

Nominal thickness

Z :

Section modulus

\( M_{\text{A}} \) :

Moment due to sustained loads

\( B_{{_{1} }} ,B_{2} \) :

Stress indices

i :

Stress intensification factor

\( P_{\hbox{max} } \) :

Design max pressure

W :

Weld joint strength reduction factor

Y :

Material coefficient

References

  1. Thomas JVL, Smith PR (1987) Piping and pipe support systems: design and engineering. McGraw-Hill

    Google Scholar 

  2. Mohinder L, Nayyar PE (2000) Piping hand book. McGraw-Hill

    Google Scholar 

  3. Sahu GK (1998) Hand book of piping design. New Age International

    Google Scholar 

  4. Atomic Energy Regulatory Board Safety Guide AERB/SG/D-1 (2002)

    Google Scholar 

  5. ASME Section III, Division-1, Subsections-NB-3000, NC-3000 or ND-3000 (1995)

    Google Scholar 

  6. ASME Section III, Division-1, Subsection-NF (2001)

    Google Scholar 

  7. ASME Section III, Division-1, Subsection-NB-3000, NC-3000 or ND-3000 (2001)

    Google Scholar 

  8. ASME Section-III-Appendix-N-Article N 1230 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Reddy .

Editor information

Editors and Affiliations

Appendix 1: Piping Qualification as per ASME B31.1

Appendix 1: Piping Qualification as per ASME B31.1

Example 11.6

A typical piping is shown in Fig. 11.17, and the design and operation conditions are given below:

$$ \begin{array}{*{20}l} {\text{Pipe size}} \hfill & { = 2{\prime \prime }\,{\text{Sch }}40} \hfill \\ {{\text{Outer diameter }}\left( {D_{\text{o}} } \right)} \hfill & { = 60.3\,{\text{mm and wall thickness}}\left( t \right) = 3.91\,{\text{mm}}} \hfill \\ {\text{Section modulus}} \hfill & { = 9.1757 \times 10^{ - 6} \,{\text{m}}^{3} } \hfill \\ {\text{Mass per unit length}} \hfill & { = 5.44\,{\text{kg}}/{\text{m}}} \hfill \\ {{\text{Radius of elbow }}\left( R \right)} \hfill & { = 76.2\,{\text{mm}}} \hfill \\ {\text{Material}} \hfill & {{\text{SS}}304{\text{L}}\left( {{\text{ASME Class 2}},{\text{SA}} - 312,{\text{seamless}}\,\&\, {\text{welded pipe}}} \right)} \hfill \\ \end{array} $$
Fig. 11.17
figure 17

FE model of a typical piping

(Tables 11.16 and 11.17)

Table 11.16 Material properties
Table 11.17 Forces and moment at critical section of pipe

Solution

Elbow parameter (h) = tR/(rm)2

rm = mean pipe radius = (Do−t)/2 = (60.3−3.91)/2 = 28.195 mm

h = 0.375

Stress intensification factor (i) = 0.9/h2/3 = 1.73

Qualification Check for sustained load:

$$ SL = \frac{{PD_{\text{o}} }}{{4t_{\text{n}} }} + 0.75i\frac{{M_{\text{A}} }}{Z} \le 1.0S_{\text{h}} $$
$$ \begin{aligned} & \frac{{1.18 \times 10^{5} \times 0.0603}}{4 \times 0.00391} + 0.75 \times 1.73 \times \frac{6}{{9.1757 \times 10^{ - 6} }} \\ & = 454948.85 + 848436.63 \\ & = 1303385.48\,{\text{N}}/{\text{m}}^{2} = 1.30\,{\text{MPa}}\,\left( {S_{\text{L}} } \right) \\ \end{aligned} $$

Actual stress is much lower than the allowable stress (Sh = 115 × 106 N/m2); hence, piping is safe under sustained loads.

Qualification Check for Thermal Load:

$$ S_{\text{E }} = i\frac{{M_{\text{C}} }}{Z} \le [S_{\text{A}} + f\left( {S_{\text{h}} - S_{\text{L}} } \right)] $$
$$ \begin{aligned} {\text{Allowable}}\,{\text{stress}}\,{\text{for}}\,{\text{thermal}}\,{\text{loads}}\,(S_{{{\text{A}})}} & = f\,\left( {1.25S_{\text{C}} + 0.25\,S_{\text{h}} } \right) \\ & = 1 \times \left( {1.25 \times 115 + 0.25 \times 115} \right) \\ & = 172.5\,{\text{MPa}} \\ \end{aligned} $$

SA + f(Sh−SL) = 172.5 + 1 × (115−1.30) = 286.2 MPa

Stresses in piping due to thermal expansion

$$ \begin{aligned} i\frac{{M_{\text{C}} }}{Z} & = 1.73 \times \frac{{\left\{ {\left( { - 114} \right)^{2} + \left( {18} \right)^{2} + \left( { - 190} \right)^{2} } \right\}^{{\frac{1}{2}}} }}{{9.1757 \times 10^{ - 6} }} \\ & = 1.73 \times \frac{222.31}{{9.1757 \times 10^{ - 6} }} = 41.91 \times 10^{6} \,{\text{N}}/{\text{m}}^{2} \\ \end{aligned} $$

Actual stress is lower than the allowable stress; hence, piping is safe under thermal loads.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, P.N., Verma, R.K., Verma, G., Reddy, G.R. (2019). Design and Analysis of Piping and Support. In: Reddy, G., Muruva, H., Verma, A. (eds) Textbook of Seismic Design. Springer, Singapore. https://doi.org/10.1007/978-981-13-3176-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3176-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3175-6

  • Online ISBN: 978-981-13-3176-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics