Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

In this chapter, based on the Halbach magnetic array, the active and passive hybrid vibration isolation technology for WD618 diesel engine is studied. Firstly, the active and passive hybrid vibration isolators based on Halbach magnetic array is designed. The content includes design requirements, scheme design, and design method; design suitable power amplifier for isolators and verify whether the performance index requirements are met and test the resistance, inductance, stiffness, and static thrust of isolators; the vibration isolation effect of the vibration isolator was tested through a single-degree-of-freedom vibration isolation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickens JD, Norwood CJ (1996) Vibration isolator facility. Department of Defence, Defence Science and Technology Oganisation

    Google Scholar 

  2. Goyder HGD, White RG (1980) Vibrational power flow from machines into built-up structures, part II: Wave propagation and power flow in beam-stiffened plates. J Sound Vib 68(1):77–96

    Article  MATH  Google Scholar 

  3. Zhu HC, He L, Huo R et al (2002) Power flow analysis in designing the vibration isolation systems for marine main propulsion engines. In: National conference on vibration engineering and applications

    Google Scholar 

  4. Wu WP (2008) Study on active vibration control strategy of complex vibration isolation system. Shandong University

    Google Scholar 

  5. Xie S, Or S W, Chan H L W, et al (2007) Analysis of vibration power flow from a vibrating machinery to a floating elastic panel. Mech Syst Signal Process

    Google Scholar 

  6. Yan JK, Shen MQ (1982) How to use vibration isolator. Noise Vib Control 6:3–9

    Google Scholar 

  7. Yan JK, Shen RY (1986) Isolator selection and layout. Noise Vib Control 3:60–65

    Google Scholar 

  8. Zhou XR (2009) Research on the installation technology of setting damper. J Jiangsu Teach Univ (Natural Science Edition) 3:47–52

    Google Scholar 

  9. Shu LH, Hu ZC, Lv ZQ (2006) Overseas research progress on vibration isolator. Ship Sci Technol 28(3):109–112

    Google Scholar 

  10. Song YC, Yu HL (2007) Research of optimum selection scheme of isolator. J Dalian Marit Univ 33(1):87–89

    Google Scholar 

  11. Gu NC, Zhang YS (2007) Study on the arrangement and installation of vibration isolators. Ship Eng 29(2):30–33

    Google Scholar 

  12. Song WY, Li ZH (2002) The research of parameters choice of double-stage vibration arrester system. J Liaoning Tech Univ (Natural Science) 21(1):46–48

    Google Scholar 

  13. Sun YH, Dong DW, Yan B et al (2013) Study on finite element modeling methods of two-stage vibration isolation system. Mach Des Manuf 1:244–247

    Google Scholar 

  14. Ma YT, Zhou Y (2008) Summary of floating raft system. Ship Sci Technol 30(4):22–26

    Google Scholar 

  15. Wang ZX (1986) Spring design manual. Shanghai Science and Technology Literature Publishing House

    Google Scholar 

  16. Zhao G, Liu J, Liu ZS (2010) Theoretical and experimental study on nonlinear dynamic model of a rubber isolator. J Vib Shock 29(1):173–177

    MathSciNet  Google Scholar 

  17. Wang R, Li SQ, Song SY (2006) Research on serialization design method of rubber vibration isolators. Noise Vib Control 26(4):11–13

    Google Scholar 

  18. Wu HL, Dai HJ (2009) Application of finite element analysis in design and development of rubber isolators. Noise Vib Control 29(1):114–116

    MathSciNet  Google Scholar 

  19. Shi F, Tong ZP, Gong LQ et al (2009) Prediction of aging life for rubber vibration isolator. Ship Eng 31(4):42–44

    Google Scholar 

  20. Zheng XL (1983) Rubber isolator applications. Rubber Ind Des 2:35–41

    Google Scholar 

  21. Miao JM (2010) Design of rubber vibration isolator of electric equipment in warship. Mach Manag Dev 25(3):28

    Google Scholar 

  22. Li YY (2009) Application of metal rubber isolator. Fly Missile 5:62–63

    Google Scholar 

  23. Zhao SP, Liu FM (1994) New isolator and its application in environmental engineering. Environ Sci 1:65–68

    Google Scholar 

  24. Richards CM, Singh R (2001) Characterization of rubber isolator nonlinearities in the context of single-and multi-degree-of-freedom experimental systems. J Sound Vib 247(5):807–834

    Article  Google Scholar 

  25. Kim BK, Youn SK, Lee WS (2004) A constitutive model and FEA of rubber under small oscillatory load superimposed on large static deformation. Arch Appl Mech 73(11):781–798

    Article  MATH  Google Scholar 

  26. Lin CR, Lee YD (1998) Effects of viscoelasticity on rubber vibration isolator design. J Appl Phys 83(12):8027–8035

    Article  Google Scholar 

  27. Chavan VS, Askhedkar R, Sanap SB (2013) Analysis of anti vibration mounts for vibration isolation in diesel engine generator set. Int J Eng Res Appl (IJERA), 1423–1429

    Google Scholar 

  28. Xu W, He L, Lv ZQ et al (2007) Analysis of dynamic characteristics of shipboard airbag vibration isolation system. J Vib Shock 26(7):122–124

    Google Scholar 

  29. Xiang F (2001) Block-oriented nonlinear control of pneumatic actuator systems. Maskinkonstruktion

    Google Scholar 

  30. Chen LC (1984) Experimental investigation of active pneumatic suspensions. Massachusetts Institute of Technology

    Google Scholar 

  31. Zhou T, Liu QL (2007) Simplified model analysis of wire-rope vibration isolator. J Vib Shock 26(9):55–59

    Google Scholar 

  32. Shu LH, Zhou W, Lv ZQ et al (2006) Stainless steel wire-rope isolator used in vibration and impact isolation design for large machine equipment. J Vib Shock 25(4):78–81

    Google Scholar 

  33. Tao X (2009) Research on property for wire-rope vibration isolation. Mach Manuf Autom 38(4):22–23

    Google Scholar 

  34. Liu GP, Wang FM, Fan WX (1999) Experimentalal study on the dynamic characteristics of steel cable isolators. J Test Meas Technol NCIT 13(3):180–184

    Google Scholar 

  35. Mizuno T, Toumiya T, Takasaki M (2007) Vibration isolation system using negative stiffness. JSME Int J 73(4):418–421

    Google Scholar 

  36. Sciulli D (1997) Dynamics and control for vibration isolation design. Virginia Tech. Dissertation

    Google Scholar 

  37. Giua A, Melas M, Seatzu C et al (2004) Design of a predictive semiactive suspension system. Veh Syst Dyn 41(4):277–300

    Article  Google Scholar 

  38. Shan SJ, He L (2006) Study on controllable damping semi-active impact isolation technology. J Vib Shock 25(5):144–147

    Google Scholar 

  39. Maciejewski I, Krzyżyński T (2011) Control design of semi-active seat suspension systems. In: Proceedings of the 5th working IEEE/IFIP conference on software architecture. IEEE Computer Society, pp 261–262

    Google Scholar 

  40. Ahuja AS, Gupta A (2014) Fuzzy logic controlled semi-active floating raft vibration isolation system. Univ J Mech Eng 2(4):142–147

    Article  Google Scholar 

  41. Bing Z et al (2015) The vibration isolation technologies of load in aviation and navigation. Int J Multimed Ubiquitous Eng 10(12):19–26

    Article  Google Scholar 

  42. Jian-ye D, Yi Z, Hongxing H (2005) The application of mixed passive-active control technique to ship equipment vibration isolation and noise reduction: a review. In: Twelfth international congress on sound and vibration

    Google Scholar 

  43. Huang QF (2010) Analysis of the whole vibration process for AVS structural control system. J Huaqiao Univ (Natural Science) 31(1):83–87

    MathSciNet  Google Scholar 

  44. Long ZQ, Hao AM, Chen G et al (2003) The research of active isolation platform with magnetically levitated control. J Astronaut 24(5):510–514

    Google Scholar 

  45. Hoque ME, Takasaki M, Ishino Y et al (2006) Development of a three-axis active vibration isolator using zero-power control. IEEE/ASME Trans Mechatron 11(4):462–470

    Article  Google Scholar 

  46. Yang P, Liu F, Liu Y, et al (2008) Computer-aided design integration of a reinforced vibration isolator for electronic equipment’s system based on experimental investigation. Struct Multidiscip Optim 35(5):489–498

    Article  Google Scholar 

  47. He L, Li Y, Shuai C (2015) Active-passive vibration isolation for ship machinery using electromagnetic actuator and air spring. In: ICSV

    Google Scholar 

  48. Hoque ME, Takasaki M, Ishino Y et al (2006) An active micro vibration isolator with zero-power controlled magnetic suspension technology. JSME Int J Ser C Mech Syst Mach Elem Manuf 49(3):719–726

    Article  Google Scholar 

  49. Lin H, McInroy JE (2003) Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platforms. IEEE Trans Control Syst Technol 11(2):267–272

    Google Scholar 

  50. El-Sinawi AH (2004) Active vibration isolation of a flexible structure mounted on a vibrating elastic base. J Sound Vib 271(1):323–337

    Article  Google Scholar 

  51. Baig RU, Pugazhenthi S (2015) Design optimization of Stewart platform configuration for active vibration isolation. Indian J Sci Technol 8(23)

    Google Scholar 

  52. Liu YG, Zhang L, Fu YL et al (2004) A new adaptive feedforward active vibration isolation control technology. In: China Aviation Society annual conference on control and application

    Google Scholar 

  53. Chen B (2008) Floating isolation system modeling and active vibration control. University of Science and Technology of China

    Google Scholar 

  54. Li KQ (2008) Application of 6-RSS parallel mechanism in six-dimensional active vibration reduction platform. Beijing Jiaotong University

    Google Scholar 

  55. Yoshioka H, Murai N (2002) An active microvibration isolation system. J Vib Acoust 123(2):269–275

    Google Scholar 

  56. Muller T et al (2005) Modelling and control techniques of an active vibration isolation system. In: IMAC-XXIII

    Google Scholar 

  57. Singh R, Kim S (2003) Examination of multi-dimensional vibration isolation measures and their correlation to sound radiation over a broad frequency range. J Sound Vib 262(3):419–455

    Article  Google Scholar 

  58. Aso Y (2008) Active vibration isolation for a laser interferometric gravitational wave detector using a suspension point interferometer. Ph.D. thesis, University of Tokyo

    Google Scholar 

  59. Arias-Montiel M, Silva-Navarro G, Antonio-García A (2014) Active vibration control in a rotor system by an active suspension with linear actuators. J Appl Res Technol 12(5):898–907

    Article  Google Scholar 

  60. Ahn KK (2014) Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat. J Sound Vib 333(5):1245–1268

    Google Scholar 

  61. Jansson F, Johansson O (2003) A study of active engine mounts. Linköpings universitet, Sweden

    Google Scholar 

  62. Hassan Aly S (1968) Fundamental studies of passive, active and semi-active automotive suspension systems. University of Leeds

    Google Scholar 

  63. Widrow B, Hoffman M (1960) Adaptive switching circuits. In: Proceedings of the IRE WESCON convention record, Part 4, Session 16, pp 96–104

    Google Scholar 

  64. Beltran-Carbajal F, Silva-Navarro G, Abundis-Fong HF (2015) Application of passive/active duffing vibration absorbers in duffing mechanical systems. In: ICSV22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, F., Weng, Z., He, L. (2019). Active and Passive Hybrid Vibration Isolation. In: Comprehensive Investigation on Active-Passive Hybrid Isolation and Tunable Dynamic Vibration Absorption. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-3056-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3056-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3055-1

  • Online ISBN: 978-981-13-3056-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics