Skip to main content

Resistance Screening Techniques for Major Insect and Mite Pests in Vegetable Crops

  • Chapter
  • First Online:
Experimental Techniques in Host-Plant Resistance

Abstract

Host plant resistance is an important component of the integrated pest management (IPM) strategies. However, it was not fully exploited for managing the most challenging insect and mite pests of vegetable crops in the tropics and subtropics. In our attempts to develop pest-resistant vegetable varieties, the World Vegetable Center (WorldVeg) has screened a vast germplasm for major pest species in vegetable crops in the past few decades. To achieve that, there is a need for more accurate and more efficient techniques to assess the resistance or susceptibility of vegetable germplasm. Resistance to borer, defoliators, and storage pests can be generally measured based on the percentage damage that they cause. However, resistance based on population size and pest life stages can be also assessed to understand antixenosis and antibiosis factors for some insects such as whiteflies, sweet-potato weevil, and bean flies. Since aphids occur in large numbers, scoring the population using a rating scale simplifies the screening methodology and enabled us to evaluate a large number of genotypes. Scoring based on damage scales has been found to be the most reliable method of screening for resistance against thrips, leafhoppers, and mites. These scores can be directly used for statistical analysis or converted to the area under the infestation pressure curve (AUIPC). Various statistical analyses including but not limited to analysis of variance (ANOVA) or an analysis based on mean (m) and standard deviation (sd) can be used to group the screened genotypes into various resistance and susceptible categories. In addition, the use of biophysical and biochemical traits for pest screening as well as its role for elucidating mechanisms of resistance will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abang, A. F., Srinivasan, R., Kekeunou, S., Hanna, R., Chagomoka, T., Chang, J. C., & Bilong Bilong, C. F. (2014). Identification of okra (Abelmoschus spp.) genotypes resistant to aphid (Aphis gossypii Glover) in Cameroon. African Entomology, 22(2), 273–284.

    Article  Google Scholar 

  • Abang, A. F., Srinivasan, R., Kekeunou, S., Yeboah, M., Hanna, R., Lin, M. Y., Tenkouano, A., & Bilong Bilong, C. F. (2016). Relationship of phenotypic structures and allelochemical compounds of okra (Abelmoschus spp.) to resistance against Aphis gossypii Glover. International Journal of Pest Management, 62(1), 55–63.

    Article  CAS  Google Scholar 

  • AVRDC [Asian Vegetable Research and Development Center]. (1975). Annual Report for 1974. Shanhua: Taiwan.

    Google Scholar 

  • AVRDC [Asian Vegetable Research and Development Center]. (1977). Progress for 1977. Shanhua: Taiwan.

    Google Scholar 

  • AVRDC [Asian Vegetable Research and Development Center]. (1984). Progress Report 1982. Taiwan: Shanhua.

    Google Scholar 

  • AVRDC [Asian Vegetable Research and Development Center]. (1990). 1988 Progress Report. Taiwan: Asian Vegetable Research and Development Center.

    Google Scholar 

  • AVRDC [Asian Vegetable Research and Development Center]. (1996). AVRDC 1995 Report. Taiwan: Asian Vegetable Research and Development Center 187 pp.

    Google Scholar 

  • AVRDC [Asian Vegetable Research and Development Center]. (1998). AVRDC Report 1997. Taiwan: Asian Vegetable Research and Development Center 191 pp.

    Google Scholar 

  • Bentz, J., Reeves, J., Pand, P., & Francis, P. (1995). Effect of nitrogen fertilizer source and levels on ovipositional choice of Poinsettia by Bemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology, 88, 1388–1392.

    Article  Google Scholar 

  • Berlinger, M. J., Magal, Z., & Benzion, A. (1983). The importance of pH in food selection by the tobacco whitefly, Bemisia tabaci. Phytoparasitica, 11, 151–160.

    Article  Google Scholar 

  • Blackmer, J. L., & Byrne, D. N. (1999). The effect of Bemisia tabaci on amino acid balance in Cucumis melo. Entomologia Experimentalis et Applicata, 93, 313–317.

    Article  Google Scholar 

  • Bleeker, P. M., Diergaarde, P. J., Ament, K., Guerra, J., Weidner, M., Schütz, S., de Both, M. T. J., Haring, M. A., & Schuurink, R. C. (2009). The role of specific tomato volatiles in tomato–whitefly interaction. Plant Physiology, 151, 925–935.

    Article  CAS  Google Scholar 

  • Chiang, H. S., & Talekar, N. S. (1980). Identification of sources of resistance to the beanfly and two other Agromyzid flies in Soybean and Mungbean. Journal of Economic Entomology, 73, 197–199.

    Article  Google Scholar 

  • Firdaus, S., van Heusden, A., Hidayati, N., Supena, E. D., Visser, R. G., & Vosman, B. (2012). Resistance to Bemisia tabaci in tomato wild relatives. Euphytica, 187, 31–45.

    Article  Google Scholar 

  • Kashyap, R. K., & Verma, A. N. (1986). Screening of tomato germplasm for susceptibility to the fruit borer, Heliothis armigera (Hubner). Indian Journal of Entomology, 48(1), 46–53.

    Google Scholar 

  • Kumar, N. K. K., Aradya, M., Deshpande, A. A., Anand, N., & Ramachandar, P. R. (1996). Initial screening of chilli and sweet pepper germplasm for resistance to chilli thrips, Scirtothrips dorsalis Hood. Euphytica, 89(3), 319–324.

    Google Scholar 

  • Maharijaya, A., Vosman, B., Steenhuis-Broers, G., Harpenas, A., Purwito, A., Visser, R. G. F., & Voorrips, R. E. (2011). Screening of pepper accessions for resistance against two thrips species (Frankliniella occidentalis and Thrips parvispinus). Euphytica, 177, 401–410.

    Article  Google Scholar 

  • Nagerwararao, P. (1973). An index for resistance in cotton hopper burn assessment. The Madras Agricultural Journal, 60(4), 264–266.

    Google Scholar 

  • Nihoul, P., Van Impe, G., & Hance, T. (1991). Characterizing indices of damage to tomato by the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) to achieve biological control. Journal of Horticultural Science, 66(5), 643–648.

    Article  Google Scholar 

  • Njau, G. M., Nyomora, A. M. S., Dinssa, F. F., Chang, J. C., Malini, P., Subramanian, S., & Srinivasan, R. (2017). Identification of thrips species and evaluation of onion (Allium cepa) entries resistant to thrips in Tanzania. International Journal of Tropical Insect Science, 37(2), 98–113.

    Article  Google Scholar 

  • Rakha, M., Hanson, P., & Srinivasan, R. (2017a). Identification of resistance to Bemisia tabaci (Genn.) in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genetic Resources and Crop Evolution, 64(2), 247–260.

    Article  Google Scholar 

  • Rakha, M., Mbengue, N. B., Srinivasan, R., Regnard, J. L., & Hanson, P. (2017b). Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genetic Resources and Crop Evolution, 64(5), 1011–1022.

    Article  CAS  Google Scholar 

  • Rakha, M., Mwambela, N., Sevgan, S., Musembi, M., Srinivasan, R., & Hanson, P. (2017c). Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta. Plant Breeding, 136(4), 562–568.

    Article  CAS  Google Scholar 

  • Romanow, L. R., de Ponti, O. M. P., & Mollema, C. (1991). Resistance in tomato to the greenhouse whitefly: Analysis of population dynamics. Entomologia Experimentalis et Applicata, 60, 247–259.

    Article  Google Scholar 

  • Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.

    Article  CAS  Google Scholar 

  • Talekar, N. S., Opeña, R. T., & Hanson, P. (2006). Helicoverpa armigera management: A review of AVRDC’s research on host plant resistance in tomato. Crop Protection, 25, 461–467.

    Article  Google Scholar 

  • Talekar, N. S. (1987). Resistance in sweet potato to sweet potato weevil. Insect Science and Its Application, 8, 819–823.

    Google Scholar 

  • Van Lenteren, J. C., & Noldus, L. P. (1990). Whitefly – Plant relationships: Behavioral and ecological aspects. In D. Gerling (Ed.), Whiteflies: Their bionomics, pest status and management. Andover: Intercept Ltd..

    Google Scholar 

  • War, A. R., Murugesan, S., Boddepalli, V. N., Srinivasan, R., & Nair, R. M. (2017). Mechanism of resistance in mungbean [Vigna radiata (L.) R. Wilczek var. radiata] to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Frontiers in Plant Science, 8, 1031. https://doi.org/10.3389/fpls.2017.01031.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the authorities of the World Vegetable Center, Taiwan, for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasan, R., Rakha, M. (2019). Resistance Screening Techniques for Major Insect and Mite Pests in Vegetable Crops. In: Kumar Chakravarthy, A., Selvanarayanan, V. (eds) Experimental Techniques in Host-Plant Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-13-2652-3_11

Download citation

Publish with us

Policies and ethics