Skip to main content

Future Prospects of SiC Thermoelectrical Sensing Devices

  • Chapter
  • First Online:
Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 500 Accesses

Abstract

This chapter presents the future prospect of SiC MEMS thermoelectrical sensing devices in terms of the development of new platform and integration capability of SiC with other materials for high-temperature applications. The chapter also describes the possibility of using the thermoelectrical effect in SiC for possible applications in sensing systems, including resonant sensors. Challenges and opportunities for the development of SiC thermal devices in high-temperature applications will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q. Wahab, A. Ellison, A. Henry, E. Janzén, C. Hallin, J. Di Persio et al., Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H–SiC Schottky diodes. Appl. Phys. Lett. 76, 2725–2727 (2000)

    Article  CAS  Google Scholar 

  2. L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 °C. Thin Solid Films 519, 6443–6446 (2011)

    Article  CAS  Google Scholar 

  3. L. Wang, S. Dimitrijev, J. Han, P. Tanner, A. Iacopi, L. Hold, Demonstration of p-type 3C–SiC grown on 150 mm Si (1 0 0) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011)

    Article  CAS  Google Scholar 

  4. J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975)

    Article  CAS  Google Scholar 

  5. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86, 1594–1609 (1998)

    Article  CAS  Google Scholar 

  6. M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)

    Article  Google Scholar 

  7. M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 48, 249–257 (2001)

    Article  Google Scholar 

  8. L. Chen, M. Mehregany, A silicon carbide capacitive pressure sensor for high temperature and harsh environment applications, in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International (2007), pp. 2597–2600

    Google Scholar 

  9. C. Dezauzier, N. Becourt, G. Arnaud, S. Contreras, J. Ponthenier, J. Camassel et al., Electrical characterization of SiC for high-temperature thermal-sensor applications. Sens. Actuators, A 46, 71–75 (1995)

    Article  CAS  Google Scholar 

  10. H.-P. Phan, T. Dinh, T. Kozeki, A. Qamar, T. Namazu, S. Dimitrijev, et al., Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci. Rep. 6 (2016)

    Google Scholar 

  11. V. Balakrishnan, T. Dinh, H.-P. Phan, T. Kozeki, T. Namazu, D.V. Dao et al., Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating. J. Micromech. Microeng. 27, 075008 (2017)

    Article  Google Scholar 

  12. A.R.M. Foisal, H.-P. Phan, T. Dinh, T.-K. Nguyen, N.-T. Nguyen, D.V. Dao, A rapid and cost-effective metallization technique for 3C–SiC MEMS using direct wire bonding. RSC Adv. 8, 15310–15314 (2018)

    Article  Google Scholar 

  13. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)

    Google Scholar 

  14. H.-P. Phan, D.V. Dao, L. Wang, T. Dinh, N.-T. Nguyen, A. Qamar et al., The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. J. Mater. Chem. C 3, 1172–1176 (2015)

    Article  CAS  Google Scholar 

  15. A. Qamar, H.-P. Phan, J. Han, P. Tanner, T. Dinh, L. Wang et al., The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC (100) four terminal devices. J. Mater. Chem. C 3, 8804–8809 (2015)

    Article  CAS  Google Scholar 

  16. A. Qamar, D.V. Dao, J. Han, H.-P. Phan, A. Younis, P. Tanner et al., Pseudo-Hall effect in single crystal 3C-SiC (111) four-terminal devices. J. Mater. Chem. C 3, 12394–12398 (2015)

    Article  CAS  Google Scholar 

  17. H.-P. Phan, T. Dinh, T. Kozeki, T.-K. Nguyen, A. Qamar, T. Namazu et al., The piezoresistive effect in top-down fabricated p-type 3C-SiC nanowires. IEEE Electron Device Lett. 37, 1029–1032 (2016)

    Article  CAS  Google Scholar 

  18. A. Qamar, H.-P. Phan, T. Dinh, L. Wang, S. Dimitrijev, D.V. Dao, Piezo-Hall effect in single crystal p-type 3C–SiC (100) thin film grown by low pressure chemical vapor deposition. RSC Adv. 6, 31191–31195 (2016)

    Article  CAS  Google Scholar 

  19. H.-P. Phan, T. Dinh, T. Kozeki, T.-K. Nguyen, A. Qamar, T. Namazu et al., Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Appl. Phys. Lett. 109, 123502 (2016)

    Article  Google Scholar 

  20. A. Qamar, D.V. Dao, J.S. Han, A. Iacopi, T. Dinh, H. P. Phan, et al., Pseudo-hall effect in single crystal n-type 3C-SiC (100) thin film, in Key Engineering Materials (2017), pp. 3–7

    Article  Google Scholar 

  21. H.-P. Phan, H.-H. Cheng, T. Dinh, B. Wood, T.-K. Nguyen, F. Mu et al., Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications. ACS Appl. Mater. Interfaces 9, 27365–27371 (2017)

    Article  CAS  Google Scholar 

  22. T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)

    Article  Google Scholar 

  23. V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sens. Actuators, A (2018)

    Article  CAS  Google Scholar 

  24. V. Balakrishnan, H.-P. Phan, T. Dinh, D.V. Dao, N.-T. Nguyen, Thermal flow sensors for harsh environments. Sensors 17, 2061 (2017)

    Article  Google Scholar 

  25. D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9, 1472–1478 (2009)

    Article  CAS  Google Scholar 

  26. T.-K. Nguyen, H.-P. Phan, T. Dinh, A.R.M. Foisal, N.-T. Nguyen, D. Dao, High-temperature tolerance of piezoresistive effect in p-4H-SiC for harsh environment sensing. J. Mater. Chem. C (2018)

    Google Scholar 

  27. A. Zubrilov, V. Nikolaev, D. Tsvetkov, V. Dmitriev, K. Irvine, J. Edmond et al., Spontaneous and stimulated emission from photopumped GaN grown on SiC. Appl. Phys. Lett. 67, 533–535 (1995)

    Article  CAS  Google Scholar 

  28. E. Kalinina, N. Kuznetsov, V. Dmitriev, K. Irvine, C. Carter, Schottky barriers on n-GaN grown on SiC. J. Electron. Mater. 25, 831–834 (1996)

    Article  CAS  Google Scholar 

  29. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. (Wiley, 2001)

    Google Scholar 

  30. D. Zhao, S. Xu, M. Xie, S. Tong, H. Yang, Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677–679 (2003)

    Article  CAS  Google Scholar 

  31. J. Edmond, A. Abare, M. Bergman, J. Bharathan, K.L. Bunker, D. Emerson et al., High efficiency GaN-based LEDs and lasers on SiC. J. Cryst. Growth 272, 242–250 (2004)

    Article  CAS  Google Scholar 

  32. V. Härle, B. Hahn, H.J. Lugauer, S. Bader, G. Brüderl, J. Baur, et al., GaN‐based LEDs and lasers on SiC. Phys. Status Solidi (a) 180, 5–13 (2000)

    Google Scholar 

  33. M.A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska et al., AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates. Appl. Phys. Lett. 77, 1339–1341 (2000)

    Article  CAS  Google Scholar 

  34. M. Shur, GaN based transistors for high power applications1. Solid-State Electron. 42, 2131–2138 (1998)

    Article  CAS  Google Scholar 

  35. S. Madhusoodhanan, S. Koukourinkova, T. White, Z. Chen, Y. Zhao, M.E. Ware, Highly linear temperature sensor using GaN-on-SiC heterojunction diode for harsh environment applications, in 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) (2016), pp. 171–175

    Google Scholar 

  36. S. Madhusoodhanan, S. Sandoval, Y. Zhao, M. Ware, Z. Chen, A highly linear temperature sensor using GaN-on-SiC heterojunction diode for high power applications. IEEE Electron Device Lett. 38, 1105–1108 (2017)

    Article  Google Scholar 

  37. M. Berthou, P. Godignon, J. Millán, Monolithically integrated temperature sensor in silicon carbide power MOSFETs. IEEE Trans. Power Electron. 29, 4970–4977 (2014)

    Article  Google Scholar 

  38. S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)

    Article  CAS  Google Scholar 

  39. S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)

    Article  CAS  Google Scholar 

  40. G. Brezeanu, M. Badila, F. Draghici, R. Pascu, G. Pristavu, F. Craciunoiu, et al., High temperature sensors based on silicon carbide (SiC) devices, in 2015 International Semiconductor Conference (CAS) (2015), pp. 3–10

    Google Scholar 

  41. M. Othman, A. Brunnschweiler, Electrothermally excited silicon beam mechanical resonators. Electron. Lett. 23, 728–730 (1987)

    Article  Google Scholar 

  42. E. Mastropaolo, R. Cheung, Electrothermal actuation studies on silicon carbide resonators. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Proc. Meas. Phenom. 26, 2619–2623 (2008)

    CAS  Google Scholar 

  43. B. Svilicic, E. Mastropaolo, B. Flynn, R. Cheung, Electrothermally actuated and piezoelectrically sensed silicon carbide tunable MEMS resonator. IEEE Electron Device Lett. 33, 278–280 (2012)

    Article  CAS  Google Scholar 

  44. E. Mastropaolo, G.S. Wood, I. Gual, P. Parmiter, R. Cheung, Electrothermally actuated silicon carbide tunable MEMS resonators. J. Microelectromech. Syst. 21, 811–821 (2012)

    Article  CAS  Google Scholar 

  45. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, Y. Zhu, et al., Design and fabrication of electrothermal SiC nanoresonators for high-resolution nanoparticle sensing, in 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO) (2016), pp. 160–163

    Google Scholar 

  46. E. Mastropaolo, I. Gual, R. Cheung, Silicon carbide electrothermal mixer-filters. Electron. Lett. 46, 62–63 (2010)

    Article  CAS  Google Scholar 

  47. G. Wood, I. Gual, P. Parmiter, R. Cheung, Temperature stability of electro-thermally and piezoelectrically actuated silicon carbide MEMS resonators. Microelectron. Reliab. 50, 1977–1983 (2010)

    Article  CAS  Google Scholar 

  48. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)

    Google Scholar 

  49. N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C. Appl. Phys. Lett. 104, 073504 (2014)

    Article  Google Scholar 

  50. Y. Furubayashi, T. Tanehira, A. Yamamoto, K. Yonemori, S. Miyoshi, S.-I. Kuroki, Peltier effect of silicon for cooling 4H-SiC-based power devices. ECS Trans. 80, 77–85 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Dinh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinh, T., Nguyen, NT., Dao, D.V. (2018). Future Prospects of SiC Thermoelectrical Sensing Devices. In: Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2571-7_7

Download citation

Publish with us

Policies and ethics