Skip to main content

Optical Functions of Methanol and Ethanol in Wide Spectral Range

  • Conference paper
  • First Online:
Advances in Signal Processing and Communication

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 526))

Abstract

The motivation of this paper is to determinate the precise complex refractive indices dispersion of ethanol, methanol, and their solutions in the wide spectral range from 8 to 40 000 cm−1 (wavelength range from 250 nm to 1.25 mm) in coupling to biosensors applications (body liquids analyses, tissue ethanol solutions testing, etc.) because a specification of the complex optical functions consistent with Kramers–Kronig dispersion relations in the whole mentioned spectral range was still missing. A general method combining UV/visible/near-infrared spectroscopy and Mueller matrix ellipsometry, Fourier transform infrared spectroscopy (FTIR), infrared attenuated total reflection (ATR) spectroscopy, and terahertz time-domain spectroscopy (THz-TDS) is proposed. The experimental data are modeled using a dielectric function parametrization based on the Brendel–Bormann oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vance, S.A., Sandros, M.G.: Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci. Rep. 4. https://doi.org/10.4049/jimmunol.177.8.5129

    Article  Google Scholar 

  2. Vance, S., Zeidan, E., Henrich, V.C., Sandros, M.G.: Comparative analysis of human growth hormone in serum using SPRi, nano-SPRi and ELISA assays. Jove-J. Vis. Exp. 107, e53508 (2016)

    Google Scholar 

  3. Chardin, H., Mercier, K., Frydman, C., Vollmer, N.: Surface plasmon resonance imaging: a method to measure the affinity of the antibodies in allergy diagnosis. J. Immunol. Methods 405, 23–28 (2014)

    Article  Google Scholar 

  4. Klein, A.K., Pan, Y., Balocco, C., Zeze, D., Gallant, A.J.: Micro fabricated spoof surface plasmon polariton structures for THz applications. In: 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, pp. 1–2 (2015)

    Google Scholar 

  5. Vollmer, N., Trombini, F., Hely, M., Bellon, S., Mercier, K., Cazeneuve, C.: Methodology to study polymers interaction by surface plasmon resonance imaging. MethodsX 2, 14–18 (2015)

    Article  Google Scholar 

  6. Chochol, J., Postava, K., Čada, M., Vanwolleghem, M., Mičica, M., Halagačka, L., Pištora, J.: Plasmonic behavior of III-V semiconductors in far-infrared and terahertz range. J. Eur. Opt. Soc.-Rapid Publ. 13(1), 13 (2017)

    Article  Google Scholar 

  7. Dupont, J., Meneghetti, M.R.: On the stabilisation and surface properties of soluble transition-metal nanoparticles in non-functionalised imidazolium-based ionic liquids. Curr. Opin. Colloid Interface Sci. 18(1), 54–60 (2013)

    Article  Google Scholar 

  8. Hale, G.M., Querry, M.R.: Optical constants of water in the 200-nm to 200-microm wavelength region. Appl. Opt. 12(3), 555–563 (1973)

    Article  Google Scholar 

  9. Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2(11), 1588–1611 (2012)

    Article  Google Scholar 

  10. Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B-Lasers Opt. 116(3), 617–622 (2014)

    Article  Google Scholar 

  11. Schwager, F., Marand, E., Davis, R.M.: Determination of self-association equilibrium constants of ethanol by FTIR spectroscopy. J. Phys. Chem. 100(50), 19268–19272 (1996)

    Article  Google Scholar 

  12. Kindt, J.T., Schmuttenmaer, C.A.: Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100(24), 10373–10379 (1996)

    Article  Google Scholar 

  13. Brendel, R., Bormann, D.: An infrared dielectric function model for amorphous solids. J. Appl. Phys. 71(1), 1–6 (1992)

    Article  Google Scholar 

  14. Theiss, W.: http://www.mtheiss.com/docs/scout2/?brendel.htmSCOUT technical manual. http://www.mtheiss.com/docs/scout2/?brendel.htm

  15. Kozma, I.Z., Krok, P., Riedle, E.: Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B-Opt. Phys. 22(7), 1479–1485 (2005)

    Article  Google Scholar 

  16. El-Kashef, H.: The necessary requirements imposed on polar dielectric laser dye solvents. Phys. B-Condens. Matter 279(4), 295–301 (2000)

    Article  Google Scholar 

  17. Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B-Lasers and Opt. 116(3), 617–622 (2014)

    Article  Google Scholar 

  18. http://www.refractometer.pl/refraction-datasheet-basicRefractive index of some selected substances, refractometer.pl. http://www.refractometer.pl/refraction-datasheet-basic

  19. Sani, E., Dell’Oro, A.: Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 60, 137–141 (2016)

    Article  Google Scholar 

  20. Rioboo, R.J.J., Philipp, M., Ramos, M.A., Kruger, J.K.: Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions. Eur. Phys. J. E 30(1), 19–26 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Czech Science Foundation (grant #15-21547S), by the Ministry of Education, Youth and Sports: by the National Program of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602, and “Regional Materials Science and Technology Centre—Feasibility Program” (# LO1203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Lesňák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lesňák, M., Postava, K., Staněk, F., Pištora, J. (2019). Optical Functions of Methanol and Ethanol in Wide Spectral Range. In: Rawat, B., Trivedi, A., Manhas, S., Karwal, V. (eds) Advances in Signal Processing and Communication . Lecture Notes in Electrical Engineering, vol 526. Springer, Singapore. https://doi.org/10.1007/978-981-13-2553-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2553-3_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2552-6

  • Online ISBN: 978-981-13-2553-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics