Skip to main content

Use of Electron Spin Resonance and Spin Trapping Technique in the Studies of Tropical Parasitic Diseases

  • Chapter
  • First Online:
Electron Spin Resonance Spectroscopy in Medicine

Abstract

Electron spin resonance is a widely used technique in the studies of free radical species due to its high sensitivity. Free radicals are species that are commonly found at very low concentration. This does not allow the easy detection of this species, and the use of complementary techniques such as spin trap becomes necessary together with electron spin resonance. Spin trapping technique involves the use of a molecule called “spin trap” that reacts with the free radical to form a more stable radical called “spin adduct.” Parasitic diseases are prevalent in different continents and countries but are especially concentrated in tropical and subtropical areas. These diseases represent a major health and economic problem mainly for developing nations. There is a wide variety of antiparasitic drugs, offering various levels of structural complexity and activity. Among them, there are several drugs that act primarily by generating radical free radicals. In this chapter, we discuss the importance and applications of ESR and spin trapping technique for the study of tropical parasitic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. What is chagas disease? WHO. Available at: http://www.who.int/chagas/disease/en/. Accessed 24 May 2017.

  2. Schaub GA. Direct transmission of Trypanosoma cruzi between vectors of Chagas’ disease. Acta Trop. 1988;45:11–9.

    CAS  PubMed  Google Scholar 

  3. Schaub GA, Böker CA. Colonization of the rectum of Triatoma infestans by Trypanosoma cruzi studied by scanning electron microscopy: influence of blood uptake by the bug. Parasitol Res. 1987;73:417–20.

    Article  CAS  Google Scholar 

  4. Schaub GA, Lösch P. Trypanosoma cruzi: origin of metacyclic trypomastigotes in the urine of the vector Triatoma infestans. Exp Parasitol. 1988;65:174–86.

    Article  CAS  Google Scholar 

  5. Rodríguez EM, Briceño L, Chiurillo MA, Mosca W, Campos Y. Tripanosomiasis americana: aspectos teóricos. Curso Latinoamericano sobre Enfermedades Infecciosas, Instituto de Biomedicina UCV. 25 Octubre - 12 Noviembre 2004.

    Google Scholar 

  6. Kelly JM, Taylor MC, Rudenko G, Blundell PA. Transfection of the African and American trypanosomes. Methods Mol Biol Clifton NJ. 1995;47:349–59.

    CAS  Google Scholar 

  7. Goldsmith RS. Infectious disease: protozoal. In: Schroeder SA, editor. Current medical diagnosis and treatment. New York: Appleton & Lange; 1991. p. 536–50.

    Google Scholar 

  8. Prata A. American trypanosomiases (Chagas disease). In: Goldsmith R, Heyneman D, editors. Tropical medicine & medical parasitology. New York: Lange Medical Publications; 1990. p. 274–5.

    Google Scholar 

  9. Hoffand R, Boyer MH. Immunology of Chagas’ disease. In: Tizard I, editor. Immunology and pathogenesis of trypanosomiasis. Florida: CRC Press; 1985. p. 145–83.

    Google Scholar 

  10. Solana ME, Katzin AM, Umezawa ES, Miatello CS. High specificity of Trypanosoma cruzi epimastigote ribonucleoprotein as antigen in serodiagnosis of Chagas’ disease. J Clin Microbiol. 1995;33:1456–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hausladen A, Stamler JS. Nitrosative stress. In:Oxidants and antioxidants. Texas: Gulf Professional Publishing; 1999.

    Google Scholar 

  12. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272:20313–6.

    Article  CAS  Google Scholar 

  13. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272:19095–8.

    Article  CAS  Google Scholar 

  14. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997;272:20963–6.

    Article  CAS  Google Scholar 

  15. Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem. 1997;272:18515–7.

    Article  CAS  Google Scholar 

  16. Schöpfer F, et al. Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Biochem J. 2000;349:35–42.

    Article  Google Scholar 

  17. Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999;1411:351–69.

    Article  CAS  Google Scholar 

  18. Prescott SM. A thematic series on oxidation of lipids as a source of messengers. J Biol Chem. 1999;274:22901.

    Article  CAS  Google Scholar 

  19. Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci U S A. 1999;96:7809–14.

    Article  CAS  Google Scholar 

  20. Bundy RE, Marczin N, Chester AH, Yacoub M. A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells. Br J Pharmacol. 2000;129:1513–21.

    Article  CAS  Google Scholar 

  21. Kim YM, et al. Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Mol Med. 1998;4:179–90.

    Article  CAS  Google Scholar 

  22. Lu SC. Regulation of glutathione synthesis. Curr Top Cell Regul. 2000;36:95–116.

    Article  CAS  Google Scholar 

  23. Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci. 1999;20:171–81.

    Article  CAS  Google Scholar 

  24. de Molina R, del María C. El estrés oxidativo y el destino celular. QuímicaViva. 2003;2:17–28.

    Google Scholar 

  25. Olea-Azar C, Rigol C, Mendizabal F, Briones R. Applications of electron spin resonance and spin trapping in tropical parasitic diseases. Mini Rev Med Chem. 2006;6:211–20.

    Article  CAS  Google Scholar 

  26. Rojas Wahl RU, Zeng L, Madison SA, DePinto RL, Shay BJ. Mechanistic studies on the decomposition of water soluble azo-radical-initiators. J Chem Soc Perkin Trans 2. 1998;9:2009–18.

    Article  Google Scholar 

  27. Jenkins CA, Murphy DM, Rowlands CC, Egerton TA. EPR study of spin-trapped free radical intermediates formed in the heterogeneously-assisted photodecomposition of acetaldehyde. J Chem Soc Perkin Trans 2. 1997:2479–86.

    Google Scholar 

  28. Santos CX, Anjos EI, Augusto O. Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys. 1999;372:285–94.

    Article  CAS  Google Scholar 

  29. Hawkins CL, Davies MJ. Degradation of hyaluronic acid, poly- and mono-saccharides, and model compounds by hypochlorite: evidence for radical intermediates and fragmentation. Free Radic Biol Med. 1998;24:1396–410.

    Article  CAS  Google Scholar 

  30. Misík V, Riesz P. Recent applications of EPR and spin trapping to sonochemical studies of organic liquids and aqueous solutions. Ultrason Sonochem. 1996;3:S173–86.

    Article  Google Scholar 

  31. Stolze K, Udilova N, Nohl H. Spin trapping of lipid radicals with DEPMPO-derived spin traps: detection of superoxide, alkyl and alkoxyl radicals in aqueous and lipid phase. Free Radic Biol Med. 2000;29:1005–14.

    Article  CAS  Google Scholar 

  32. Dikalov SI, Mason RP. Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals: reassignment to alkoxyl radical adducts. Free Radic Biol Med. 2001;30:187–97.

    Article  CAS  Google Scholar 

  33. Ma Z, Zhao B, Yuan Z. Application of electrochemical and spin trapping techniques in the investigation of hydroxyl radicals. Anal Chim Acta. 1999;389:213–8.

    Article  CAS  Google Scholar 

  34. Gianni L, Zweier JL, Levy A, Myers CE. Characterization of the cycle of iron-mediated electron transfer from Adriamycin to molecular oxygen. J Biol Chem. 1985;260:6820–6.

    CAS  PubMed  Google Scholar 

  35. Sankarapandi S, Zweier JL. Evidence against the generation of free hydroxyl radicals from the interaction of copper, zinc-superoxide dismutase and hydrogen peroxide. J Biol Chem. 1999;274:34576–83.

    Article  CAS  Google Scholar 

  36. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987;84:1404–7.

    Article  CAS  Google Scholar 

  37. Zweier JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci U S A. 1988;85:4046–50.

    Article  CAS  Google Scholar 

  38. Zweier JL, et al. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem. 1989;264:18890–5.

    CAS  PubMed  Google Scholar 

  39. Mackor A, Wajer TAJW, de Boer TJ. C-nitroso compounds. Part VI. Acyl-alkyl-nitroxides from acyl radicals and nitroso compounds as studied by ESR. Tetrahedron. 1968;24:1623–31.

    Article  CAS  Google Scholar 

  40. Mackor A, Wajer TAJW, de Boer TJ, van Voorst JDW. C-nitroso compounds. Part I. The formation of nitroxides by photolysis of nitroso compounds as studied by electron spin resonance. Tetrahedron Lett. 1966;7:2115–23.

    Article  Google Scholar 

  41. Mackor A, Wajer TAJW, de Boer TJ, van Voorst JDW. C-nitroso compounds. Part III. Alkoxy-alkyl-nitroxides as intermediates in the reaction of alkoxy-radicals with nitroso compounds. Tetrahedron Lett. 1967;8:385–90.

    Article  Google Scholar 

  42. Iwamura M, Inamoto N. Novel radical 1,3-addition to nitrones. Bull Chem Soc Jpn. 1967;40:702.

    Article  CAS  Google Scholar 

  43. Iwamura M, Inamoto N. Novel formation of nitroxide radicals by radical addition to nitrones. Bull Chem Soc Jpn. 1967;40:703.

    Article  CAS  Google Scholar 

  44. Iwamura M, Inamoto N. Reactions of nitrones with free radicals. II. Formation of nitroxides. Bull Chem Soc Jpn. 1970;43:860–3.

    Article  CAS  Google Scholar 

  45. Chalfont GR, Perkins MJ, Horsfield A. Probe for homolytic reactions in solution. II. Polymerization of styrene. J Am Chem Soc. 1968;90:7141–2.

    Article  CAS  Google Scholar 

  46. Janzen EG, Blackburn BJ. Detection and identification of short-lived free radicals by an electron spin resonance trapping technique. J Am Chem Soc. 1968;90:5909–10.

    Article  CAS  Google Scholar 

  47. Lagercrantz C, Forshult S. Trapping of Free Radicals formed by g-Irradiation of Organic Compounds. Nature. 1968;218:1247–8.

    Article  CAS  Google Scholar 

  48. Emmons W, The D. Preparation and properties of oxaziranes. J Am Chem Soc. 1957;79:5739–54.

    Article  CAS  Google Scholar 

  49. Bonnett R, Brown RFC, Clark VM, Sutherland IO, Todd A. Experiments towards the synthesis of corrins. Part II. The preparation and reactions of D1-pyrroline 1-oxides. J Chem Soc Resumed. 1959:2094–102.

    Google Scholar 

  50. de Boer TJ. Spin-trapping in early and some recent nitroso chemistry. Can J Chem. 1982;60:1602–9.

    Article  Google Scholar 

  51. Ozawa T, Hanaki A. Spin-trapping of superoxide ion by a water-soluble, nitroso-aromatic spin-trap. Biochem Biophys Res Commun. 1986;136:657–64.

    Article  CAS  Google Scholar 

  52. Stolze K, Mason RP. Spin trapping artifacts in DMSO. Biochem Biophys Res Commun. 1987;143:941–6.

    Article  CAS  Google Scholar 

  53. Wargon JA, Williams E. Electron spin resonance studies of radical trapping in the radiolysis of organic liquids. I. Evidence for the primary formation of the methoxy radical in methanol. J Am Chem Soc. 1972;94:7917–8.

    Article  CAS  Google Scholar 

  54. Janzen EG. Spin trapping. Acc Chem Res. 1971;4:31–40.

    Article  CAS  Google Scholar 

  55. Buettner GR. Spin trapping: ESR parameters of spin adducts 1474 1528V. Free Radic Biol Med. 1987;3:259–303.

    Article  CAS  Google Scholar 

  56. Li ASW, Chignell CF. The NoH value in EPR spin trapping: a new parameter for the identification of 5,5-dimethyl-1-pyrroline-N-oxide spin adducts. J Biochem Biophys Methods. 1991;22:83–7.

    Article  CAS  Google Scholar 

  57. Finkelstein ELI, Rosen GM, Rauckman EJ, Paxton J. Spin Trapping of Superoxide. Mol Pharmacol. 1979;16:676–85.

    CAS  PubMed  Google Scholar 

  58. Docampo R. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact. 1990;73:1–27.

    Article  CAS  Google Scholar 

  59. Cerecetto H, et al. Formal potentials of new analogues of nifurtimox: relationship to activity. Farmacoterapia. 1992;47:1207–13.

    CAS  Google Scholar 

  60. Cerecetto H, et al. Synthesis and anti-trypanosomal activity of novel 5-nitro-2-furaldehyde and 5-nitrothiophene-2-carboxaldehyde semicarbazone derivatives. Il Farmaco. 1998;53:89–94.

    Article  CAS  Google Scholar 

  61. Maio RD, et al. Synthesis and antichagasic properties of new 1,2,6-thiadiazin-3,5-dione 1,1-dioxides and related compounds. Arzneimittelforschung. 1999;49:759–63.

    PubMed  Google Scholar 

  62. Cerecetto H, et al. Synthesis and antitrypanosomal evaluation of E-isomers of 5-nitro-2-furaldehyde and 5-nitrothiophene-2-carboxaldehyde semicarbazone derivatives. Structure–activity relationships. Eur J Med Chem. 2000;35:343–50.

    Article  CAS  Google Scholar 

  63. Docampo R, Moreno SN. Free radical metabolites in the mode of action of chemotherapeutic agents and phagocytic cells on Trypanosoma cruzi. Rev Infect Dis. 1984;6:223–38.

    Article  CAS  Google Scholar 

  64. Hazra B, Sur P, Roy DK, Sur B, Banerjee A. Biological activity of diospyrin towards Ehrlich ascites carcinoma in Swiss A mice. Planta Med. 1984;50:295–7.

    Article  CAS  Google Scholar 

  65. Estani SS, Segura EL. Treatment of Trypanosoma cruzi infection in the undetermined phase. Experience and current guidelines of treatment in Argentina. Mem Inst Oswaldo Cruz. 1999;94:363–5.

    Article  Google Scholar 

  66. Díaz EG, Montalto de Mecca M, Castro JA. Reactions of nifurtimox with critical sulfhydryl-containing biomolecules: their potential toxicological relevance. J Appl Toxicol. 2004;24:189–95.

    Article  Google Scholar 

  67. Olea-Azar C, et al. Cyclic voltammetry and electron paramagnetic resonance studies of some analogues of nifurtimox. Spectrosc Lett. 1998;31:99–109.

    Article  CAS  Google Scholar 

  68. Olea-Azar C, Atria AM, di Maio R, Seoane G, Cerecetto H. Electron spin resonance and cyclic voltammetry studies of nitrofurane and nitrothiophene analogues of nifurtimox. Spectrosc Lett. 1998;31:849–57.

    Article  CAS  Google Scholar 

  69. Olea-Azar C, et al. ESR spin trapping studies of free radicals generated from nitrofuran derivative analogues of nifurtimox by electrochemical and Trypanosoma cruzi reduction. Free Radic Res. 2003;37:993–1001.

    Article  CAS  Google Scholar 

  70. Tsuhako MH, Alves MJM, Colli W, Brener Z, Augusto O. Restricted bioreductive metabolism of a nitroimidazole-thiadiazole derivative with curative action in experimental Trypanosoma cruzi infections. Biochem Pharmacol. 1989;38:4491–6.

    Article  CAS  Google Scholar 

  71. Viodé C, et al. Enzymatic reduction studies of nitroheterocycles. Biochem Pharmacol. 1999;57:549–57.

    Article  Google Scholar 

  72. Aguirre G, et al. In vitro activity and mechanism of action against the protozoan parasite Trypanosoma cruzi of 5-nitrofuryl containing thiosemicarbazones. Bioorg Med Chem. 2004;12:4885–93.

    Article  CAS  Google Scholar 

  73. Cahill A, White INH. Reductive activation of N-oxides to cause DNA strand breakage in cell lines in vitro. Biochem Soc Trans. 1991;19:127S.

    Article  CAS  Google Scholar 

  74. Brown JM. redox activation of benzotriazine n-oxides: mechanisms and potential as anticancer drugs. In: Adams PGE, Breccia PA, Fielden DEM, Wardman PP, editors. Selective activation of drugs by redox processes. New York: Springer; 1990. p. 137–48. https://doi.org/10.1007/978-1-4615-3768-7_12.

    Chapter  Google Scholar 

  75. Cerecetto H, et al. 1,2,5-oxadiazole n-oxide derivatives and related compounds as potential antitrypanosomal drugs: structure−activity relationships. J Med Chem. 1999;42:1941–50.

    Article  CAS  Google Scholar 

  76. Iheanacho EN, Sarel S, Samuni A, Avramovici-Grisaru S, Spira DT. Growth inhibition of Plasmodium falciparum involving carbon centered iron-chelate radical (L., X-)-Fe(III) based on pyridoxal-betaine. A novel type of antimalarials active against chloroquine-resistant parasites. Free Radic Res Commun. 1991;15:1–10.

    Article  CAS  Google Scholar 

  77. Cohen G, Hochstein P. Generation of hydrogen peroxide in erythrocytes by hemolytic agents. Biochemistry. 1964;3:895–900.

    Article  CAS  Google Scholar 

  78. Holtzman JL. Role of reactive oxygen and metabolite binding in drug toxicity. Life Sci. 1982;30:1–9.

    Article  CAS  Google Scholar 

  79. Vásquez-Vivar J, Augusto O. Oxidative activity of primaquine metabolites on rat erythrocytes IN vitro and in vivo. Biochem Pharmacol. 1994;47:309–16.

    Article  Google Scholar 

  80. Becker K, et al. Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol. 2004;34:163–89.

    Article  CAS  Google Scholar 

  81. Deslauriers R, Butler K, Smith ICP. Oxidant stress in malaria as probed by stable nitroxide radicals in erythrocytes infected with Plasmodium berghei. The effects of primaquine and chloroquine. Biochim Biophys Acta. 1987;931:267–75.

    Article  CAS  Google Scholar 

  82. Driscoll JS, Hazard GF, Wood HB, Goldin A. Structure-antitumor activity relationships among quinone derivatives. Cancer Chemother Rep 2. 1974;4:1–362.

    CAS  PubMed  Google Scholar 

  83. Lind C, Hochstein P, Ernster L. DT-diaphorase as a quinone reductase: A cellular control device against semiquinone and superoxide radical formation. Arch Biochem Biophys. 1982;216:178–85.

    Article  CAS  Google Scholar 

  84. Thor H, et al. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982;257:12419–25.

    CAS  PubMed  Google Scholar 

  85. Thor H, Smith MT, Hartzell P, Orrenius S. Toxic and nontoxic pathways during metabolism of menadione (2-methyl-1,4- naphthoquinone) in isolated hepatocytes. In: Hietanen E, Laitinen M, Hanninen O, editors. Cytochrome P-450, biochemistry, biophysics and environmental implications. New York: Elsevier; 1982. p. 729–32.

    Google Scholar 

  86. van de Straat R, de Vries J, Vermeulen NPE. Role of hepatic microsomal and purified cytochrome P-450 in one-electron reduction of two quinone imines and concomitant reduction of molecular oxygen. Biochem Pharmacol. 1987;36:613–9.

    Article  Google Scholar 

  87. Takahashi N, Schreiber J, Fischer V, Mason RP. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: An ESR study. Arch Biochem Biophys. 1987;252:41–8.

    Article  CAS  Google Scholar 

  88. Wefers H, Sies H. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: Relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity. Arch Biochem Biophys. 1983;224:568–78.

    Article  CAS  Google Scholar 

  89. Gant TW, Doherty M, Odowole D, Sales KD, Cohen GM. Semiquinone anion radicals formed by the reaction of quinones with glutathione or amino acids. FEBS Lett. 1986;201:296–300.

    Article  Google Scholar 

  90. Chemical studies on qinghaosu (artemisinine). China Cooperative Research Group on qinghaosu and its derivatives as antimalarials. J Tradit Chin Med. 1982;2:3–8.

    Google Scholar 

  91. Brossi A, et al. Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem. 1988;31:645–50.

    Article  CAS  Google Scholar 

  92. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford: Oxford University Press; 2015.

    Book  Google Scholar 

  93. Wu W-M, et al. Unified mechanistic framework for the Fe(II)-induced cleavage of Qinghaosu and derivatives/analogues. The first spin-trapping evidence for the previously postulated secondary C-4 Radical. J Am Chem Soc. 1998;120:3316–25.

    Article  CAS  Google Scholar 

  94. Wu W-M, Chen Y-L, Zhai Z, Xiao S-H, Wu Y-L. Study on the mechanism of action of artemether against schistosomes: the identification of cysteine adducts of both carbon-centred free radicals derived from artemether. Bioorg Med Chem Lett. 2003;13:1645–7.

    Article  CAS  Google Scholar 

  95. Chan J, et al. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci U S A. 1989;86:2453–7.

    Article  CAS  Google Scholar 

  96. Linares E, et al. Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Free Radic Biol Med. 2001;30:1234–42.

    Article  CAS  Google Scholar 

  97. Navarro M, et al. Toward a novel metal-based chemotherapy against tropical diseases. Part 5. Synthesis and characterization of new Ru(II) and Ru(III) clotrimazole and ketoconazole complexes and evaluation of their activity against Trypanosoma cruzi. Polyhedron. 2000;19:2319–25.

    Article  CAS  Google Scholar 

  98. Cerecetto H, et al. 1, 2, 4-Triazine n-oxide derivatives: studies as potential hypoxic cytotoxins. Part III. Arch Pharm (Weinheim). 2004;337:271–80.

    Article  CAS  Google Scholar 

  99. Navarro M, et al. Design of copper DNA intercalators with leishmanicidal activity. J Biol Inorg Chem. 2003;8:401–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Olea-Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barriga-González, G., Olea-Azar, C. (2019). Use of Electron Spin Resonance and Spin Trapping Technique in the Studies of Tropical Parasitic Diseases. In: Shukla, A. (eds) Electron Spin Resonance Spectroscopy in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2230-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2230-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2229-7

  • Online ISBN: 978-981-13-2230-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics