Skip to main content

Electron Spin Resonance (ESR) Study of Human Blood and Its Interaction with Magnetite Nanoparticles

  • Chapter
  • First Online:
Electron Spin Resonance Spectroscopy in Medicine

Abstract

Electron spin resonance (ESR) is the only method for direct detection of paramagnetic species and free radicals. In this chapter three topics will be described: iron and copper ion complexes present in human blood, free radicals generation and study, as well as the interactions between blood and magnetite nanoparticles as potential drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kempe S, Metz H, Mäder K. Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research – Chances and challenges. Eur J Pharm Biopharm. 2010;74:55–66.

    Article  CAS  PubMed  Google Scholar 

  2. Descrosiers M, Schauer DA. Electron paramagnetic resonance (EPR) biodosimetry. Nucl Instrum Methods Phys Res, Sect B. 2001;184:219–28.

    Article  Google Scholar 

  3. Kumar Shukla A. EMR/ESR/EPR spectroscopy for characterization of nanomaterials. In:Springer series on Advanced Structured Materials, vol. 62. New York: Springer; 2017.

    Google Scholar 

  4. Krzyminiewski R, Kruczyński Z, Dobosz B, Zając A, Mackiewicz A, Leporowska E, Folwaczna S. EPR study of iron ion complexes in human blood. Appl Magn Reson. 2011;40:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ślawska-Waniewska A, Mosiniewicz-Szablewska E, Nedelko N, Gałązka-Friedman J, Friedman A. Magnetic studies of iron-entities in human tissues. J Magn Magn Mater. 2004;272–276:2417–9.

    Article  CAS  Google Scholar 

  6. Weil JA, Bolton JR. Electron Paramagnetic Resonance. Elementary theory and practical application. New Jersey: John Wiley & Sons; 2007.

    Google Scholar 

  7. Polakovs M, Mironova-Ulmane N, Pavlenko A, Aboltins A. Determination of methemoglobin in human blood after ionizing radiation by EPR. IOP Conf Ser: Mater Sci Eng. 2015;77:012028.

    Article  CAS  Google Scholar 

  8. Hamirani YS, Franklin W, Grifka RG, Stainback RF. Methemoglobinemia in a Young Man. Tex Heart Inst J. 2008;35(1):76–7.

    PubMed  PubMed Central  Google Scholar 

  9. Dunne J, Caron A. Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin in vitro and in vivo. Biochem J. 2006;399:513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Svistunenko DA, Dunne J, Fryer M, Nicholls P, Reeder BJ, Wilson MT, Bigotti MG, Cutruzzolà F, Copper CE. Comperative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide. Biophys J. 2002;83:2845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pulatova MK, Sharygin VL, Shlyakova TG, Sipyagina AE, Wasserman AM. Use of EPR spectroscopy to check the changes in organism radioresistance. Clinical Results Biophysics. 2009;54(2):223–31.

    Article  Google Scholar 

  12. Parkkinen J, Vääränen O, Vahtera E. Plasma ascorbate protects coagulation factors against photooxidation. Thromb Haemost. 1996;75(2):292–7.

    CAS  PubMed  Google Scholar 

  13. Gomme PT, McCann KB. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today. 2005;10:267–73.

    Article  CAS  PubMed  Google Scholar 

  14. Kubiak T, Krzyminiewski R, Dobosz B. EPR study of paramagnetic centers in human blood. Curr Top Biophys. 2013;36:7–13.

    Article  CAS  Google Scholar 

  15. Hirota Y, Haida M, Mohtarami F, Takeda K, Iwamoto T, Shioya S, Tsuji C, Hasumi K, Nakazawa H. Implication of ESR signals from ceruloplasmin (Cu2+) and transferrin (Fe3+) in pleural effusion of lung diseases. Pathophysiology. 2000;7:41–5.

    Article  CAS  PubMed  Google Scholar 

  16. Yang A, Gaffney BJ. Determination of relative spin concentration in some high-spin ferric proteins using E/D-distribution in electron paramagnetic resonance simulations. Biophys J. 1987;51:55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaffney B, Maguire B, Weber RT, Maresch GG. Disorder at metal sites in proteins: a high frequency EMR study. Appl Magn Reson. 1999;16:207–21.

    Article  CAS  Google Scholar 

  18. Liehr JG, Jones JS. Role of iron in estrogen-induced cancer. Curr Med Chem. 2001;8:839–49.

    Article  CAS  PubMed  Google Scholar 

  19. Healy J, Tipton K. Ceruloplasmin and what it might do. J Neural Transm. 2007;114:777–81.

    Article  CAS  PubMed  Google Scholar 

  20. KouohElombo F, Radosevich M, Poulle M, Descamps J, Chtourou S, Burnouf T, Catteau JP, Bernier JL, Cotelle N. Purification of human ceruloplasmin as a by- product of C1-inhibitor. Biol Pharm Bull. 2000;23:1406–9.

    Article  CAS  Google Scholar 

  21. Zowczak M, Iskra M, Torliński L, Cofta S. Analysis of Serum Copper and Zinc Concentrations in Cancer Patients. Biol Trace Elem Res. 2001;82(1–3):1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Senra Varela A, Bosco Lopez Saez JJ, Quintela Senra D. Serum ceruloplasmin as a diagnostic marker of cancer. Cancer Lett. 1997;121:139–45.

    Article  CAS  PubMed  Google Scholar 

  23. Özyilkan Ö, Baltali E, Özyilkan E, Tekuzman G, Kars A, Firat D. Ceruloplasmin level in women with breast disease. Acta Oncol. 1992;31:843–6.

    Article  PubMed  Google Scholar 

  24. Sachdeva OP, Girdhar V, Gulati SP, Lal H. Serum ceruloplasmin levels in head and neck cancers. Indian J Clin Biochem. 1993;8:51–3.

    Article  Google Scholar 

  25. Feelders RA, Vreugdenhil G, Eggermont AM, Kuiper-Kramer PA, van Eijk HG, Swaak AJ. Regulation of iron metabolism in the acute-phase response: interferon γ and tumor necrosis factor α induce hypoferraemia, ferritin production and a decrease in circulating transferrin receptors in cancer patients. Eur J Clin Investig. 1998;28:520–7.

    Article  CAS  Google Scholar 

  26. Weiss G. Iron and immunity: a double-edged sword. Eur J Clin Investig. 2002;32:70–8.

    Article  CAS  Google Scholar 

  27. Nagai M, Mawatari K, Nagai Y, Horita S, Yoneyama Y, Hori H. Studies of the oxidation states of hemoglobin M Boston and hemoglobin M Saskatoon in blood by EPR spectroscopy. Biochem Biophys Res Commun. 1995;210(2):483–90.

    Article  CAS  PubMed  Google Scholar 

  28. Fujita Y, Tsuchiya K, Abe S, Takiguchi Y, Kubo S, Sakurai H. Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors. Forensic Sci Int. 2005;152(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  29. Gamarra LF, Pontuschka WM, Amaro E Jr, Costa-Filho AJ, Brito GES, Vieira ED, Carneiro SM, Escriba DM, Falleiros AMF, Salvador VL. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study. Mater Sci Eng C. 2008;28:519–25.

    Article  CAS  Google Scholar 

  30. Aasa R, Aisen P. An Electron Paramagnetic Resonance Study of the Iron and Copper Complexes of Transferrin. J Biol Chem. 1968;243(9):2399–404.

    CAS  PubMed  Google Scholar 

  31. Maghraby AM, Ali MA. Spectroscopic study of gamma irradiated bovine hemoglobin. Radiat Phys Chem. 2007;76:1600–5.

    Article  CAS  Google Scholar 

  32. Sakurai H, Tsuchiya K, Fujita Y, Okada K. Dating of human blood by electron spin resonance spectroscopy. Naturwissenschaften. 1989;76:24–5.

    Article  CAS  PubMed  Google Scholar 

  33. Svistunenko DA, Davies NA, Wilson MT, Stidwill RP, Singer M, Cooper CE. Free radical in blood: a measure of haemoglobin autoxidation in vivo? J ChemSoc Perkin Trans. 1997;2:2539–43.

    Article  Google Scholar 

  34. Moreira LM, Poli AL, Lyon JP, et al. Ferric species of the giant extracellular hemoglobin of Glossoscolexpaulistus as function of pH: An EPR study on the irreversibility of the heme transitions. Comp BiochemPhys Part B. 2008;150:292–300.

    Article  CAS  Google Scholar 

  35. Kolesar JM, Schelman WR, Geiger PG, Holen KD, Traynor AM, Alberti DB, Thomas JP, Chitambar CR, Wilding G, Antholine WE. Electron paramagnetic resonance study of peripheral blood mononuclear cells from patients with refractory solid tumors treated with Triapine. J Inorg Biochem. 2008;102(4):693–8.

    Article  CAS  PubMed  Google Scholar 

  36. Hubel CA, Kozlov AV, Kagan VE, Evans RW, Davidge ST, McLaughlin MK, Roberts JM. Decreased transferrin and increased transferrin saturation in sera of women with preeclampsia: implications for oxidative stress. Am J Obstet Gynecol. 1996;175:692–700.

    Article  CAS  PubMed  Google Scholar 

  37. Farnaud S, Amini M, Rapisarda C, Cammack R, Bui T, Drake A, Evans RW, SuryoRahmanto Y, Richardson DR. Biochemical and spectroscopic studies of human melanotransferrin (MTf): electron-paramagnetic resonance evidence for a difference between the iron-binding site of MTf and other transferrins. Int J Biochem Cell Biol. 2008;40:2739–45.

    Article  CAS  PubMed  Google Scholar 

  38. Bou-Abdallah F, Chasteen ND. Spin concentration measurements of high-spin (g′ = 4.3) rhombic iron(III) ions in biological samples: theory and application. J Biol Inorg Chem. 2008;13:15–24.

    Article  CAS  PubMed  Google Scholar 

  39. Walker FA. Magnetic spectroscopic (EPR, ESEEM, Mössbauer, MCD and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins. Coordin Chem Rev. 1999;185–186:471–534.

    Article  Google Scholar 

  40. Winiecki T, Kazmierska J, Krzyminiewski R, Dobosz B, Kruczynski Z, Kubiak T. Utility of EPR for evaluation of free radicals and iron complexes in blood in patients before and after radiotherapy. Radiother Oncol. 2012;103(Suppl 1):S574.

    Article  Google Scholar 

  41. Foster MA, Pocklington T, Miller JDB, Mallard JR. A study of electron spin resonance spectra of whole blood from normal and tumour bearing patients. Br J Cancer. 1973;28:340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pocklington T, Foster MA. Electron spin resonance of caeruloplasmin and iron transferrin in blood of patients with various malignant diseases. Br J Cancer. 1977;36:369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz HM, Wiesner J. Radiation effects on plasma electron-spin resonance spectra of cancer patients. Radiology. 1972;104:209–10.

    Article  Google Scholar 

  44. Horn RA, Friesen EJ, Stephens RL, Hedrick WR, Zimbrick JD. Electron spin resonance studies on properties of ceruloplasmin and transferrin in blood from normal human subjects and cancer patients. Cancer. 1979;43:2392–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lohmann W, Schreiber J, Gerhardt H, Breithaupt H, Löffler H, Pralle H. Electron spin resonance (esr) investigations on blood of patients with leukemia. Blut. 1979;39:147–51.

    Article  CAS  PubMed  Google Scholar 

  46. Sakurai H, Yoshimura T. Models for coordination site of cytochrome P-450, characterization of hemin-thiolato complexes with S, O, and N donor ligands by electronic absorption and electron spin resonance spectra. J Inorg Biochem. 1985;24:75–96.

    Article  CAS  PubMed  Google Scholar 

  47. Tang SC, Koch S, Papaefthymiou GC, Foner S, Frankel RB, Ibers JA, Holm RH. Axial ligation modes in iron(III) Porphyrins. Models for the oxidized reaction states of cytochrome P-450 enzymes and the molecular structure of iron(III) protoporphyrin IX dimethyl ester p-nitrobenzenethiolate. J Am Chem Soc. 1976;98:2414–34.

    Article  CAS  PubMed  Google Scholar 

  48. Miki T, Ikeya M. Electron spin resonance of blood stains and its application to the estimation of time after bleeding. Forensic Sci Int. 1987;35:149–58.

    Article  CAS  PubMed  Google Scholar 

  49. Domek H, Sagan L, Piątek J, Gonet B. Electron spin resonance (ESR) as a method to estimate the time of blood extravasation in forensic medicine. Curr Top Biophys. 2010;33(Suppl A):39–42.

    CAS  Google Scholar 

  50. Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospects. Int J Pharm Sci Rev Res. 2010;3(1):91–100.

    CAS  Google Scholar 

  51. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press; 1999.

    Google Scholar 

  52. Mimić-Oka J, Simić DV, Simić TP. Free radicals in cardiovascular diseases. FU Med Biol. 1999;6(1):11–22.

    Google Scholar 

  53. Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  CAS  PubMed  Google Scholar 

  54. Nagendrappa CG. An appreciation of free radical chemistry- 3, free radicals in diseases and health. Resonance. 2005;10:65–73.

    Article  Google Scholar 

  55. Ali ATMM, Al-Swayeh OA, Al-Rashed RS, Al-Mofleh IA, Al-Dohayan AD, Al-Tuwaijri AS. Role of oxygen-derived free radicals on gastric mucosal injury induced by ischemia-reperfusion. Saudi J Gastroenterol. 1996;2:19–28.

    CAS  PubMed  Google Scholar 

  56. Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem. 1989;58:79–110.

    Article  CAS  PubMed  Google Scholar 

  57. Bagchi K, Puri S. Free radicals and antioxidants in health and disease. East Mediterr Health J. 1998;4:350–60.

    Google Scholar 

  58. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  59. Miller DM, Buettner GR, Aust SD. Transition metals as catalysts of “autoxidation” reactions. Free RadicBiol Med. 1990;8:95–108.

    Article  CAS  Google Scholar 

  60. Cadenas E, Sies H. The lag phase. Free Radic Res. 1998;28:601–9.

    Article  CAS  PubMed  Google Scholar 

  61. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000;304:55–68.

    Article  CAS  PubMed  Google Scholar 

  62. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Agarwal A, Prabakaran SA. Mechanism, measurement and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43:963–74.

    CAS  PubMed  Google Scholar 

  64. Pourmorad F, Hosseinimehr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol. 2006;5:1142–5.

    CAS  Google Scholar 

  65. O’donovan DJ, Fernandes CJ. Free radicals and diseases in premature infants. Antioxid Redox Signal. 2004;6:169–76.

    Article  PubMed  CAS  Google Scholar 

  66. Dufor D, Pichette A, Mshvildadze V, Bradette-Hebert M, Lavoie S, Longtin A, Laprise C, Legault J. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from LedumgroenlandicumRetzius. J Ethnopharmacol. 2007;111:22–8.

    Article  Google Scholar 

  67. Gupta SK, Joshi S, Velpandian T, Awor L, Prakash J. An update on pharmacological prospective for prevention and development of cataract. Indian J Pharm. 1997;23:3–10.

    Google Scholar 

  68. Kehrer JP, Smith CV. Free radicals in biology: sources, reactivities, and roles in the etiology of human diseases. In: Frei B, editor. Natural antioxidants in human health and disease. San Diego: Academic Press; 1994. p. 25–62.

    Google Scholar 

  69. Sen S, Chakraborty R, De B, Mazumder J. Plants and phytochemicals for peptic ulcer: an overview. Pharmacogn Rev. 2009;3:270–9.

    Google Scholar 

  70. Bergendi L, Benes L, Durackova Z, Ferencik M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999;65:1865–74.

    Article  CAS  PubMed  Google Scholar 

  71. Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem. 2000;267:4928–44.

    Article  CAS  PubMed  Google Scholar 

  72. Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem. 2004;385:1–10.

    Article  CAS  PubMed  Google Scholar 

  73. Kerr ME, Bender CM. An introduction to oxygen free radicals. Heart Lung. 1996;25(3):200–9.

    Article  CAS  PubMed  Google Scholar 

  74. Vergely C, Maupoil V, Clermont G, Bril A, Rochette L. Identification and quantification of free radicals during myocardial ischemia and reperfusion using electron paramagnetic resonance spectroscopy. Arch Biochem Biophys. 2003;420:209–16.

    Article  CAS  PubMed  Google Scholar 

  75. Kopàni M, Celec P, Danišovič L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clin Chim Acta. 2006;364:61–6.

    Article  PubMed  CAS  Google Scholar 

  76. Gurbuz M, Yamanel L, Bulucu F, Inal V, Aydin A. Oxidative stress status in familial Mediterranean fever with or without proteinuria. Free RadicBiol Med. 2005;38(2):271–5.

    Article  CAS  Google Scholar 

  77. Nomoto S, Shibata M, Iriki M, Riedel W. Role of afferent pathways of heat and cold in body temperature regulation. Int J Biometeorol. 2004;49(2):67–85.

    Article  PubMed  Google Scholar 

  78. Frohlich D, Wittmann S, Rothe G, Sessler DI, Vogel P, Taeger K. Mild hyperthermia down-regulates receptor-dependent neutrophil function. Anesth Analg. 2004;99(1):284–92.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB. Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol. 2004;14(3):259–66.

    Article  PubMed  Google Scholar 

  80. Haberland ME, Smith CV. Lipid peroxide-dependent modifications of lipoprotein in atherosclerosis. In: Moslen MT, Smith CV, editors. Free radical mechanisms of tissue injury. London: CRC Press; 1992.

    Google Scholar 

  81. Rubin E, Faraber JL. Cell injury. In: Rubin E, Farber JL, editors. Pathology. Philadelphia: JB Lippincott C0; 1994. p. 16–7.

    Google Scholar 

  82. Dunne J, Caron A, Menu P, Alayash AJ, Buehler PW, Wilson MT, Silaghi-Dumitrescu R, Faivre B, Cooper CE. Ascorbate removes key precursors to oxidative damage by cell-free haemoglobinin vitro and in vivo. Biochem J. 2006;399:513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vasquez-Vivar J, Santos AM, Junqueira VBC, Augusto O. Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicals. Biochem J. 1996;314:869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. May JM, Qu Z, Cobb CE. Human erythrocyte recycling of ascorbic acid. J Biol Chem. 2004;279(15):14975–82.

    Article  CAS  PubMed  Google Scholar 

  85. Koppenol WH. Chemistry of iron and copper in radical reactions. In: Rice-Evans CA, Burdon RH, editors. Free radical damage and its control. Amsterdam: Elsevier; 1994.

    Google Scholar 

  86. Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta. 2006;368:53–76.

    Article  CAS  PubMed  Google Scholar 

  87. Gonet B, Szmatłoch E, Nowacka-Pietrzak M, Domański L. Electron spin resonance spectroscopy for examination of human ischemic heart disease. Eur J Intern Med. 1999;10:214–7.

    Article  CAS  Google Scholar 

  88. Majewski W, Krzyminiewski R, Stanisić M, Iskra M, Krasiński Z, Nowak M, Dobosz B. Measurement of free radicals using electron paramagnetic resonance spectroscopy during open aorto-iliac arterial reconstruction. Med Sci Monit. 2014;20:2453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miller FJ, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms. A potential mediator of aneurismal remodeling. Arterioscler Thromb Vasc Biol. 2002;22:560–5.

    Article  CAS  PubMed  Google Scholar 

  90. Irie H, Kato T, Ikebe K, Tsuchida T, Oniki Y, Takagi K. Antioxidant effect of MCI-186, a New free- vadical scavenger, on ischemia-reperfusion injury In a rat hindhimb amputation model. J Surg Res. 2004;120:320–19.

    Article  CAS  Google Scholar 

  91. Crimi E, Ignarro LJ, Napoli C. Microcirculation and oxidative stress. Free Radic Res. 2014;41:1364–75.

    Article  CAS  Google Scholar 

  92. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  93. Demirbag R, Yilmaz R, Gur M, Celik H, Guzel S, Selek S, Kocyigit A. DNA damage in metabolic sundrome and its association with antioxidative and oxidative measurements. Int J Clin Pract. 2006;60:1187–93.

    Article  CAS  PubMed  Google Scholar 

  94. Kotani Y, Ishino K, Osaki S, Honjo O, Suezawa T, Kanki K, Yutani C, Sano S. Efficacy of MCI-186, a free-radical scavenger and antioxidant, for resuscitation of nonbeating donor he arts. J Thorac Cardiovasc Surg. 2007;133:1626–32.

    Article  CAS  PubMed  Google Scholar 

  95. Krzyminiewski R, Kruczynski Z, Stepien A, Dobosz B. Free radicals in a conglomerate of peripheral blood with a spin trap investigated by the EPR method before and after angioplasty treatment. Pol J Med Phys Eng. 2008;14(1):1–12.

    Article  Google Scholar 

  96. Krzyminiewski R, Kruczynski Z, Stepien A, Dobosz B. Spin traps in the detection of free radicals in the blood of patients with ischemia. Pol J Med Phys Eng. 2009;15(1):47–54.

    Google Scholar 

  97. Pincemail J. Free radicals and antioxidants in human diseases. In: Favier AE, et al., editors. Analysis of free radicals in biological systems. Basel: BirkhäuserVerlag; 1995. p. 83–98.

    Chapter  Google Scholar 

  98. McCord J. Oxygen-derived free radicals in post ischemic tissue injury. N Engl J Med. 1985;312:159–63.

    Article  CAS  PubMed  Google Scholar 

  99. Thompson JA, Hess ML. The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Prog Cardiovasc Dis. 1986;28(6):449–62.

    Article  CAS  PubMed  Google Scholar 

  100. Pietri S, Culcasi M, Cozzone PJ. Real-time continuous-flow spin trapping of hydroxyl radical in the ischemic and post-ischemic myocardium. Eur J Biochem. 1989;186:163–73.

    Article  CAS  PubMed  Google Scholar 

  101. Gey KF, Stähelin HB, Eichholzer M. Poor plasma status of carotene and vitamin C is associated with higher mortality from ischemic heart disease and stroke. Clin Investig. 1993;71:3–6.

    Article  CAS  PubMed  Google Scholar 

  102. Mosca L, Rubenfire M, Mandel C, Cheryl R, Tarshis T, Tsai A, Pearson T. Antioxidant nutrient supplementation reduces the susceptibility of low density lipoprotein to oxidation in patients with coronary artery disease. J Am Coll Cardiol. 1997;30:392–9.

    Article  CAS  PubMed  Google Scholar 

  103. Brown CJ. Lack of vitamin C linked to heart attacks. Can Med Assoc J. 1997;156(10):1373.

    Google Scholar 

  104. Van de Vijver LPL, Kardinaal AFM, Grobbee DE, Princen HMG, Van Poppel G. Lipoprotein oxidation, antioxidants and cardiovascular risk: epidemiologic evidence. Prostaglandins Leukot Essent Fatty Acids. 1997;57(4–5):479–87.

    Article  PubMed  Google Scholar 

  105. Güler K, Palanduz S, Ademoglu E, Salmayenli N, et al. Total antioxidant status, lipid parameters, lipid peroxidation and glutathione levels in patients with acute myocardial infarction. Med Sci Res. 1998;26:105–6.

    Google Scholar 

  106. Kelman DJ, DeGraz JA, Mason RP. Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. J Biol Chem. 1994;269:7458–63.

    CAS  PubMed  Google Scholar 

  107. Gunther MR, Kelman DJ, Corbett JT, Mason RP. Self peroxidation of methmyoglobin results in formation of an oxygen reactive tryptophan-centered radical. J Biol Chem. 1995;270:16075–81.

    Article  CAS  PubMed  Google Scholar 

  108. Mrakic-Sposta S, Gussoni M, Montorsi M, Porcelli S, Vezzoli A. Assessment of a standardized ros production profile in humans by electron paramagnetic resonance. Oxidative Med Cell Longev. 2012;2012:973927. 10 pages

    Article  CAS  Google Scholar 

  109. Davies KJA, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198–205.

    Article  CAS  PubMed  Google Scholar 

  110. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 1999;222(3):283–92.

    Article  CAS  PubMed  Google Scholar 

  111. Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS. Regulation of free radical outflow from an isolated muscle bed in exercising Humans. Am J Phys. 2004;287(4):H1689–99.

    CAS  Google Scholar 

  112. Bailey DA, Lawrenson L, McEneny J, Young IS, James PE, Jackson SK, Henry RR, Mathieu-Costello O, Mccord JM, Richardson RS. Electron paramagnetic spectroscopic evidence of exercise-induced free radical accumulation in human skeletal muscle. Free Radic Res. 2007;41(2):182–90.

    Article  CAS  PubMed  Google Scholar 

  113. Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  114. Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med Cell Longev. 2011;2011:194586. 15 pages

    CAS  Google Scholar 

  115. Mahmoudi M, Shokrgozar MA, Sardari S, Moghadam MK, Vali H, Laurent S, Stroeve P. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale. 2011;3:1127–38.

    Article  CAS  PubMed  Google Scholar 

  116. Mykhaylyk O, Cherchenko A, Ilkin A, Dudchenko N, Ruditsa V, Novoseletz M, Zozulya Y. Glial brain tumor targeting of magnetite nanoparticles in rats. J Magn Magn Mater. 2001;225:241–7.

    Article  CAS  Google Scholar 

  117. Mykhaylyk O, Dudchenko N, Dudchenko A. Doxorubicin magnetic conjugate targeting upon intravenous injection into mice: high gradient magnetic field inhibits the clearance of nanoparticles from the blood. J Magn Magn Mater. 2005;473:482–247.

    Google Scholar 

  118. Diaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S, Yagűe C, Fernández-Pacheco R, Ibarra MR, Santamaria J, González-Fernández A. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small. 2008;4(11):2025–34.

    Article  CAS  PubMed  Google Scholar 

  119. Bychkova AV, Sorokina ON, Kovarskii AL, Leonova VB, Rozenfel’d MA. Interaction between blood plasma proteins and magnetite nanoparticles. Colloid J. 2010;72(5):696–702.

    Article  CAS  Google Scholar 

  120. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jansch M, Stumpf P, Graf C, Rűhl E, Műller RH. Adsorption kinetics of plasma proteins on ultra small superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm. 2012;428:125–33.

    Article  CAS  PubMed  Google Scholar 

  122. Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri JC, Luciani N, Gazeau F. Nanomagneting sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano. 2012;6(3):2665–78.

    Article  CAS  PubMed  Google Scholar 

  123. Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep. 2014;4:5020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dobosz B, Krzyminiewski R, Schroeder G, Kurczewska J. Electron paramagnetic resonance as an effective method for a characterization of functionalized iron oxide. J Phys Chem Solids. 2014;75:594–8.

    Article  CAS  Google Scholar 

  125. Cavalu S, Damian G, Dânşoreanu M. EPR study of non-covalent spin labeled serum albumin and hemoglobin. Biophys Chem. 2002;99:181–8.

    Article  CAS  PubMed  Google Scholar 

  126. Nagasaki Y. Nitroxide radicals and nanoparticles: a partnership for nanomedicine radical delivery. Ther Deliv. 2012;3(2):165–79.

    Article  CAS  PubMed  Google Scholar 

  127. Shimizu M, Yoshitomi T, Nagasaki Y. The behavior of ROS-scavenging nanoparticles in blood. J ClinBiochem Nutr. 2014;54(3):166–73.

    CAS  Google Scholar 

  128. AroraWahajuddin S. Superparamagnetic iron oxide nanoparticles: magnetic nano platforms as drug carriers. Int J Nanomedicine. 2012;7:3445–71.

    Article  CAS  Google Scholar 

  129. Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14:21266–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lazarovits J, Chen YY, Sykes EA, Chan WCW. Nanoparticle–blood interactions: the implications on solid tumour targeting. Chem Commun. 2015;51:2756–67.

    Article  CAS  Google Scholar 

  131. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623–32.

    Article  CAS  PubMed  Google Scholar 

  132. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 2011;5(9):7503–9.

    Article  CAS  PubMed  Google Scholar 

  133. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One. 2010;5(6):e10949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009;5:701–8.

    Article  CAS  PubMed  Google Scholar 

  135. Prapainop K, Witter DP, Wentworth P. A Chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc. 2012;134:4100–3.

    Article  CAS  PubMed  Google Scholar 

  136. Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Köller M, Epple M. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem. 2010;20:512–8.

    Article  CAS  Google Scholar 

  137. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Renal Clearance of Nanoparticles. Nat Biotechnol. 2007;25(10):1165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.

    Article  CAS  PubMed  Google Scholar 

  139. Hałupka-Bryl M, Bednarowicz M, Dobosz B, Krzyminiewski R, Zalewski T, Wereszczyńska B, Nowaczyk G, Jarek M, Nagasaki Y. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J Magn Magn Mater. 2015;384:320–7.

    Article  CAS  Google Scholar 

  140. Kubiak T, Krzyminiewski R, Dobosz B, Schroeder G, Kurczewska J, Hałupka-Bryl M. A study of magnetite nanoparticles in whole human blood by means of electron paramagnetic resonance. Acta Bio-Optica et Informatica Medica Inżynieria Biomedyczna. 2015;21(1):9–15.

    Google Scholar 

  141. Dobosz B, Krzyminiewski R, Schroeder G, Kurczewska J. Diffusion of functionalized magnetite nanoparticles forced by a magnetic field studied by EPR method. Curr Appl Phys. 2016;16:562–7.

    Article  Google Scholar 

  142. Dobosz B, Krzyminiewski R, Kurczewska J, Schroeder G. The influence of surface modification, coating agents and pH value of aqueous solutions on physical properties of magnetite nanoparticles investigated by ESR method. J Magn Magn Mater. 2017;429:203–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadeta Dobosz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobosz, B., Krzyminiewski, R. (2019). Electron Spin Resonance (ESR) Study of Human Blood and Its Interaction with Magnetite Nanoparticles. In: Shukla, A. (eds) Electron Spin Resonance Spectroscopy in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2230-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2230-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2229-7

  • Online ISBN: 978-981-13-2230-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics