Skip to main content

Investigation into the Electrical Conductivity of Carbon Nanosphere-Based Green Nanofluids

  • Conference paper
  • First Online:
Transactions on Engineering Technologies (WCECS 2017)

Abstract

Electrical conductivity measurements of green nanofluids prepared from carbon nanospheres dispersed in 60:40 ethylene glycol and water (60:40 EG/W) based nanofluids have been studied. In order to investigate the effect of temperature and volume concentration on the electrical conductivity of the nanofluids, the temperature was varied from 15 to 60 °C and volume fractions of 0.04, 0.1, 0.12, and 0.2 vol% were used. The results show that the electrical conductivity is greatly enhanced with an increase in temperature and volume fraction. The highest enhancement is seen at 0.2 vol% with 1470% increase in electrical conductivity . The high conductivity enhancement indicates a potential for cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Orhevba, M. Umaru, I.A. Garba, B. Suleiman, M.U. Garba, N. Ernest, Synthesis of composite biomass briquettes as alternative household fuel for domestic application, in Proceedings of the World Congress on Engineering and Computer Science 2016, WCECS 2016, 19–21 October 2016, San Francisco, USA. Lecture Notes in Engineering and Computer Science (2016), pp. 696–700

    Google Scholar 

  2. J.D. Bayani, J.R.M.D. Pena, E.R. Magdaluyo Jr., Infrared spectra and mechanical properties of corn oil-based polyurethane reinforced with silica nanoparticles from rice husk ash, in Proceedings of the World Congress on Engineering 2016, WCE 2016, 29 June–1 July 2016, London, U.K. Lecture Notes in Engineering and Computer Science (2016), pp. 998–1002

    Google Scholar 

  3. V. Makarov et al., “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия) 6(1)(20) (2014)

    Google Scholar 

  4. C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17-MR71 (2007)

    Article  Google Scholar 

  5. R. Kumar, R.K. Singh, D.P. Singh, Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: graphene and CNTs. Renew. Sustain. Energy Rev. 58, 976–1006 (2016)

    Article  Google Scholar 

  6. M.R. Islam, B. Shabani, G. Rosengarten, Electrical and thermal conductivities of 50/50 water-ethylene glycol based TiO2 nanofluids to be used as coolants in PEM Fuel cells. Energy Procedia 110, 101–108 (2017)

    Article  Google Scholar 

  7. H. Konakanchi, R. Vajjha, D. Misra, D. Das, Electrical conductivity measurements of nanofluids and development of new correlations. J. Nanosci. Nanotechnol. 11(8), 6788–6795 (2011)

    Article  Google Scholar 

  8. J.W. Pratt, L.E. Klebanoff, K. Munoz-Ramos, A.A. Akhil, D.B. Curgus, B.L. Schenkman, Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes. Appl. Energy 101, 776–796 (2013)

    Article  Google Scholar 

  9. S.I. Smedley, The Interpretation of Ionic Conductivity in Liquids (Springer Science & Business Media, 2012)

    Google Scholar 

  10. H. Semat, R. Katz, Physics, Chapter 28: Electrical Conduction in Liquids and Solids (1958)

    Google Scholar 

  11. I. Nurdin, Satriananda, Investigation on electrical conductivity enhancement of water based maghemite (γ-Fe2O3) nanofluids. Int. J. Mater. Sci. Appl. J. 6, 32–36, Art. no. 1 (2017)

    Google Scholar 

  12. M. Zawrah, R. Khattab, L. Girgis, H. El Daidamony, R.E.A. Aziz, Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 12(3), 227–234 (2016)

    Article  Google Scholar 

  13. T.T. Baby, S. Ramaprabhu, Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 108(12), 124308 (2010)

    Article  Google Scholar 

  14. M. Kole, T. Dey, Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 113(8), 084307 (2013)

    Article  Google Scholar 

  15. K. Yan, Q. Xue, Q. Zheng, L. Hao, The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 18(25), 255705 (2007)

    Article  Google Scholar 

  16. I. Tan, A. Ahmad, B. Hameed, Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J. Hazard. Mater. 153(1), 709–717 (2008)

    Article  Google Scholar 

  17. A. Nieto-Márquez, R. Romero, A. Romero, J.L. Valverde, Carbon nanospheres: synthesis, physicochemical properties and applications. J. Mater. Chem. 21(6), 1664–1672 (2011)

    Article  Google Scholar 

  18. H.-S. Qian, F.-M. Han, B. Zhang, Y.-C. Guo, J. Yue, B.-X. Peng, Non-catalytic CVD preparation of carbon spheres with a specific size. Carbon 42(4), 761–766 (2004)

    Article  Google Scholar 

  19. Y.Z. Jin et al., Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43(9), 1944–1953 (2005)

    Article  MathSciNet  Google Scholar 

  20. J.-Y. Miao et al., Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon 42(4), 813–822 (2004)

    Article  Google Scholar 

  21. M. Ibrahim Mohammed, R. Ismaeel Ibrahim, L.H. Mahmoud, M.A. Zablouk, N. Manweel, A. Mahmoud, Characteristics of carbon nanospheres prepared from locally deoiled asphalt, in Advances in Materials Science and Engineering, vol. 2013 (2013)

    Google Scholar 

  22. X. Yu et al., Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochim. Acta 182, 908–916 (2015)

    Article  Google Scholar 

  23. Y. Wang, F. Su, C.D. Wood, J.Y. Lee, X.S. Zhao, Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind. Eng. Chem. Res. 47(7), 2294–2300 (2008)

    Article  Google Scholar 

  24. N. Katcho et al., Structure of carbon nanospheres prepared by chlorination of cobaltocene: experiment and modeling. Phys. Rev. B 77(19), 195402 (2008)

    Article  Google Scholar 

  25. P. Zhang, Z.-A. Qiao, S. Dai, Recent advances in carbon nanospheres: synthetic routes and applications. Chem. Commun. 51(45), 9246–9256 (2015)

    Article  Google Scholar 

  26. A.A. Arie, H. Kristianto, M. Halim, J.-K. Lee, Biomass based carbon nanospheres as electrode materials in lithium ion batteries. ECS Trans. 66(11), 13–19 (2015)

    Article  Google Scholar 

  27. H. Kristianto, C.D. Putra, A.A. Arie, M. Halim, J.K. Lee, Synthesis and characterization of carbon nanospheres using cooking palm oil as natural precursors onto activated carbon support. Procedia Chem. 16, 328–333 (2015)

    Article  Google Scholar 

  28. X.-W. Chen, O. Timpe, S.B. Hamid, R. Schlögl, D.S. Su, Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon. Carbon 47(1), 340–343 (2009)

    Article  Google Scholar 

  29. J. Zhu, J. Jia, F.L. Kwong, D.H.L. Ng, S.C. Tjong, Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenerg. 36, 12–19 (2012)

    Article  Google Scholar 

  30. H. Li, X. He, Y. Liu, H. Yu, Z. Kang, S.-T. Lee, Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 46(1), 147–151 (2011)

    Article  Google Scholar 

  31. J.O. Alves, C. Zhuo, Y.A. Levendis, J.A. Tenório, Catalytic conversion of wastes from the bioethanol production into carbon nanomaterials. Appl. Catal. B 106(3), 433–444 (2011)

    Article  Google Scholar 

  32. K. Shi, J. Yan, E. Lester, T. Wu, Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. Ind. Eng. Chem. Res. 53(39), 15012–15019 (2014)

    Article  Google Scholar 

  33. A. Melati, E. Hidayati, Synthesis and characterization of carbon nanotube from coconut shells activated carbon. J. Phys. Conf. Ser. (IOP Publishing) 694(1), 012073 (2016)

    Google Scholar 

  34. G.A. Adewumi, N. Revaprasadu, A.C. Eloka-Eboka, F. Inambao, C. Gervas, A facile low-cost synthesis of carbon nanosphere from coconut fibre, in Proceedings of the World Congress on Engineering and Computer Science 2017, WCECS 2017, 25–27 October 2017, San Francisco, USA. Lecture Notes in Engineering and Computer Science (2017), pp. 577–582

    Google Scholar 

  35. P. Debye, P. Scherrer, Interference on inordinate orientated particles in X-ray light. III. Physikalische Zeitschrift 18, 291–301 (1917)

    Google Scholar 

  36. A. Nath, D.D. Purkayastha, M. Sharon, C.R. Bhattacharjee, Catalyst free low temperature synthesis and antioxidant activity of multiwalled carbon nanotubes accessed from ghee, clarified butter of cow’ s milk. Mater. Lett. 152, 36–39 (2015)

    Article  Google Scholar 

  37. A.D. Faisal, A.A. Aljubouri, Synthesis and Production of Carbon Nanospheres Using Noncatalytic CVD Method

    Google Scholar 

  38. S.A. Adio, M. Sharifpur, J.P. Meyer, Investigation into effective viscosity, electrical conductivity, and pH of γ-Al2O3-glycerol nanofluids in Einstein concentration regime. Heat Transf. Eng. 36(14–15), 1241–1251 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Adedayo Adewumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adewumi, G.A., Inambao, F., Eloka-Eboka, A., Sharifpur, M., Meyer, J. (2019). Investigation into the Electrical Conductivity of Carbon Nanosphere-Based Green Nanofluids. In: Ao, SI., Kim, H., Amouzegar, M. (eds) Transactions on Engineering Technologies. WCECS 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-2191-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2191-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2190-0

  • Online ISBN: 978-981-13-2191-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics