Skip to main content

DNA Fingerprinting: Discovery, Advancements, and Milestones

  • Chapter
  • First Online:
DNA Fingerprinting: Advancements and Future Endeavors

Abstract

The discovery of DNA fingerprinting is one of the most fascinating scientific discoveries till date. It is not only limited to the laboratory research but also showed a huge potential in forensic science and criminal justice system. It was one of the milestones in resolving crimes by exploring the polymorphism of human DNA in noncoding regions. Since its inception, DNA fingerprinting has taken a great leap in terms of advancements in technology, accuracy, and reliability of the results as well as rapidity of the process for its more efficient application in justice delivery systems. This has become the most valuable armory of the judiciary system to aid in the conviction of guilty as well as exoneration of the innocent. Advancement of DNA fingerprinting technique from RFLP to STR and now NGS has sped up the process of DNA profiling with better discriminating power among individuals with greater efficacy. In this prospect, the current chapter elaborately recapitulates the process of advancement in DNA fingerprinting describing the use of different STR kits, i.e., autosomal STRs, Y-STRs, X-STRs, miniSTRs, etc., for forensic applications. We have also highlighted the importance of SNPs and amalgamation of NGS kits in forensic application. Notably, the importance of wildlife forensic has been discussed for the identification of species as well as its geographic origin. Another important budding aspect of RNA-based identification of forensically relevant biological fluids has also been discussed in much detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benschop CC, Haned H, de Blaeij TJ, Meulenbroek AJ, Sijen T (2012) Assessment of mock cases involving complex low template DNA mixtures: a descriptive study. Forensic Sci Int Genet 6:697–707

    Article  CAS  Google Scholar 

  2. Benschop C, Haned H, Sijen T (2013) Consensus and pool profiles to assist in the analysis and interpretation of complex low template DNA mixtures. Int J Legal Med 127:11–23

    Article  Google Scholar 

  3. Bornman DM, Hester ME, Schuetter JM, Kasoji MD, Minard-Smith A, Barden CA et al (2012) Short-read, high throughput sequencing technology for STR genotyping. BioTechniques:1–6

    Google Scholar 

  4. Borsting C, Mauling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78. https://doi.org/10.1016/j.fsigen.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Børsting C, Mogensen HS, Morling N (2013) Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples. Forensic Sci Int Genet 7:345–352

    Article  Google Scholar 

  6. Budowle B, van Daal A (2008) Forensically relevant SNP classes. BioTechniques 44:603–608

    Article  CAS  Google Scholar 

  7. Budowle B, van Daal A (2009) Extracting evidence from forensic DNA analyses: future molecular biology directions. Biotechniques 46:339–340

    Article  CAS  Google Scholar 

  8. Butler JM (2006) Genetics and genomics of core STR loci used in human identity testing. J Forensic Sci 51(2):253–265

    Article  CAS  Google Scholar 

  9. Butler JM (2010) Chapter 3: historical methods. In: Fundamentals of forensic DNA typing. Elsevier Academic Press, San Diego, pp 43–78

    Chapter  Google Scholar 

  10. Butler JM (2015) The future of forensic DNA analysis. Phil Trans R Sac B 370:20140252

    Article  Google Scholar 

  11. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054

    CAS  Google Scholar 

  12. Chambers GK, Curtis C, Millar CD, Huynen L, Lambert DM (2014) DNA fingerprinting in zoology: past, present, future. Investig Genet 5:3

    Article  Google Scholar 

  13. Coble MD, Butler JM (2005) Characterization of new miniSTR loci to aid analysis of degraded DNA. J Forensic Sci 50:43–53

    Article  CAS  Google Scholar 

  14. Collins PJ, Hennessy LK, Leibelt CS, Roby RK, Reeder DJ, Foxall PA (2004) Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR Identifiler PCR amplification kit. J Forensic Sci 49:1265–1277

    Article  Google Scholar 

  15. Crawford MH, Beaty KG (2013) DNA fingerprinting in anthropological genetics: past, present, future. Investig Genet 4:23

    Article  Google Scholar 

  16. Dauber EM, Kratzer A, Neuhuber F et al (2012) Germline mutations of STR-alleles include multistep mutations as denied by sequencing of repeat and flanking regions. Forensic Sci Int Genet 6:381–386

    Article  CAS  Google Scholar 

  17. Eichmann C, Parson W (2008) “Mitominis”: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples. Int J Legal Med 122:385–388

    Article  Google Scholar 

  18. Freire-Aradas A, Fondevila M, Kriegel AK, Phillips C, Gill P et al (2012) A new SNP assay for identification of highly degraded human DNA. Forensic Sci Int Genet 6:341–349

    Article  CAS  Google Scholar 

  19. Gaensslen RE, Harris HA, Lee HC (2007) Introduction to forensics & criminalistics. McGraw-Hill Companies, Inc. USA

    Google Scholar 

  20. Ge J, Eisenberg A, Budowle B (2012) Developing criteria and data to determine best options for expanding the core CODIS loci. Investig Genet 3:1

    Article  Google Scholar 

  21. Giardina E, Spinella A, Novelli G (2011) Past, present and future of forensic DNA typing. Nanomedicine (Lond) 6:257–270

    Article  CAS  Google Scholar 

  22. Guha S, Kashyap VK (2006) Molecular identification of lizard by RAPD & FINS of mitochondrial 16s rRNA gene. Legal Med (Tokyo, Japan) 8(1):5–10

    Article  CAS  Google Scholar 

  23. Hanson EK, Ballantyne J (2013) Rapid and inexpensive body fluid identification by RNA profiling-based multiplex high resolution melt (HRM) analysis. F1000Res 2:281. https://doi.org/10.12688/f1000

  24. Hopwood AJ, Elliott K (2012) Forensic DNA research: keeping it real. Int J Legal Med 126(2):343–344

    Article  Google Scholar 

  25. Hudlow WR, Buoncristiani MR (2012) Development of a rapid, 96-well alkaline based differential DNA extraction method for sexual assault evidence. Forensic Sci Int Genet 6(1):1–16

    Article  CAS  Google Scholar 

  26. Imaizumi K et al (2007) Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Legal Med 121(3):184–191

    Article  Google Scholar 

  27. Ivanova NV, Clare EL, Borisenko AV (2012) DNA barcoding in mammals, methods. Mol biol (Clifton, NJ) 858:153–182

    Google Scholar 

  28. Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  CAS  Google Scholar 

  29. Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79

    Article  CAS  Google Scholar 

  30. Jeffreys AJ, Wilson V, Thein SL (1985c) Individual-specific ‘fingerprints’ of human DNA. Nature 314:67–74

    Article  CAS  Google Scholar 

  31. Jiang X, He J, Jia F, Shen H, Zhao J et al (2012) An integrated system of ABO typing and multiplex STR testing for forensic DNA analysis. Forensci Sci Int Genet 6:785–797

    Article  CAS  Google Scholar 

  32. Jobling MA (2013) Curiosity in the genes: the DNA fingerprinting story. Investig Genet 4:20

    Article  Google Scholar 

  33. Johnson RN, Wilson-Wilde L, Linacre A (2014) Current and future directions of DNA in wildlife forensic science. Forensic Sci Int Genet 10:1–14

    Article  CAS  Google Scholar 

  34. Karlsson AO, Holmlund G (2007) Identification of mammal species using species-specific DNA pyrosequencing. Forensic Sci Int 173:16–20

    Article  CAS  Google Scholar 

  35. Kidd K et al. (2012a) Better SNPs for better forensics: ancestry, phenotype, and family identification. Poster presented at the National Institute of Justice (NIJ) annual meeting, Arlington VA, June 2012

    Google Scholar 

  36. Kidd KK et al (2012b) Expanding data and resources for forensic use of SNPs in individual identification. Forensic Sci Int Genet 6(5):646–652

    Article  CAS  Google Scholar 

  37. Kosoy R, Nassir R, Tian C et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30(1):69–78

    Article  Google Scholar 

  38. Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47:773–785

    Article  Google Scholar 

  39. Legendre M, Pochet N, Pak T, Verstrepen KJ (2007) Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res 17:1787–1796

    Article  CAS  Google Scholar 

  40. Lindenbergh A, de Pagter M, Ramdayal G et al (2012) A multiplex (m) RNA-profiling system for the forensic identification of body fluids and contact traces. Forensci Sci Int Genet 6:565–577

    Article  CAS  Google Scholar 

  41. Lou C, Cong B, Li S et al (2011) A SNaPshot assay for genotyping 44 individual identification single nucleotide polymorphisms. Electrophoresis 32:368–378

    Article  CAS  Google Scholar 

  42. Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659

    Article  Google Scholar 

  43. Matte M, Williams L, Frappier R, Newman J (2012) Prevalence and persistence of foreign DNA beneath fingernails. Forensic Sci Int Genet 6:236–243

    Article  CAS  Google Scholar 

  44. McDonald J, Lehman DC (2012) Forensic DNA analysis. Clin Lab Sci 25:109–113

    PubMed  Google Scholar 

  45. McGraw SN, Keeler SP, Huffman JE (2013) Forensic DNA analysis of wildlife evidence. In: Jaiprakash S, Ray L (eds) Forensic DNA analysis (current practices and emerging technologies). ISBN 9781466571266

    Google Scholar 

  46. Moretti TR, Moreno LI, Smerick JB, Pignone ML, Hizon R et al (2016) Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci Int Genet 25:175–181

    Article  CAS  Google Scholar 

  47. Mulero JJ, Hennessy LK (2013) Next-generation STR genotyping kits for forensic applications. In: Jaiprakash S, Ray L (eds) Forensic DNA analysis (Current practices and emerging technologies). ISBN 9781466571266

    Google Scholar 

  48. Mullaney JM, Mills RE, Pittard WS, Devine SE (2010) Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet 19:R131

    Article  CAS  Google Scholar 

  49. Müller M, Sibbing U, Hohof C, Brinkmann B (2010) Haplotype-assisted characterization of germline mutations at short tandem repeat loci. Int J Legal Med 124:177–182

    Article  Google Scholar 

  50. Musgrave-Brown E, Ballard D, Balogh K et al (2007) Forensic validation of the SNPforID 52-plex assay. Forensic Sci Int Genet 1:186–190

    Article  Google Scholar 

  51. Nandinene MR, Prasad SPR, Goud CV, Negi DS, Nagaraju J, Gowrishankar J (2010) DNA-based identification of the victims of the Mangalore air crash of may 2010. Curr Sci 99:3

    Google Scholar 

  52. Osborne MJ, Christidis L, Norman JA (2002) Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, koala, possums, and allies). Mol Phylogenet Evol 25(2):219–228

    Article  CAS  Google Scholar 

  53. Pakstis AJ, Speed WC, Fang R et al (2010) SNPs for a universal individual identification panel. Hum Genet 127:315–324

    Article  Google Scholar 

  54. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–394

    Article  CAS  Google Scholar 

  55. Polymeropoulos MH, Rath DS, Xiao H, Merrill CR (1992) Tetra nucleotide repeat polymorphism at the human beta-actin related pseudogene H-beta-ac-psi-2 (ACTBP2). Nucleic Acids Res 20:1432

    Article  CAS  Google Scholar 

  56. Pun KM et al (2009) Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis 30(6):1008–1014

    Article  CAS  Google Scholar 

  57. Ramel C (1997) Mini- and microsatellites. Environ Health Perspect 105(Suppl 4):781–789

    Article  CAS  Google Scholar 

  58. Richert NJ (2011) Swabbing firearms for handler’s DNA. J Forensic Sci 56(4):972–975

    Article  Google Scholar 

  59. Rolf B, Schurenkamp M, Junge A, Brinkmann B (1997) Sequence polymorphism at the tetranucleotide repeat of the human beta-actin related pseudogene H-beta-Acpsi-2 (ACTBP2) locus. Int J Legal Med 110:69–72

    Article  CAS  Google Scholar 

  60. Romeika JM, Yan F (2013) Recent advances in forensic DNA analysis. J Forensic Res S12:001. https://doi.org/10.4172/2157-7145.S12-001

    Article  Google Scholar 

  61. Sanchez JJ, Phillips C, Børsting C et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27:1713–1724

    Article  CAS  Google Scholar 

  62. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. ProcNatl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  63. Shewale JG, Qi L, Calandro LM (2012) Principles, practice, and evolution of capillary electrophoresis as a tool for forensic DNA analysis. Forensic Sci Rev 24(2):79–100

    CAS  PubMed  Google Scholar 

  64. Shrivastava P, Jain T, Trivedi VB (2016) DNA fingerprinting: a substantial and imperative aid to forensic investigation. Eur J Forensic Sci 3:23. https://doi.org/10.5455/ejfs.204929

    Article  Google Scholar 

  65. Thomasma SM, Foran DR (2012) The influence of swabbing solutions on DNA recovery from touch samples. J Forensic Sci 58(2):465–469

    Article  Google Scholar 

  66. Tsukada KK, Takayanagi H, Asamura M, Ota FH (2002) Multiplex short tandem repeat typing in degraded samples using newly designed primers for the TH01, TPOX, CSF1PO, and vWA loci. Legal Med 4:239–245

    Article  CAS  Google Scholar 

  67. Van de Goor LHP, Panneman H, van Haeringen WA (2009) A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci. Anim Genet 40:630–636

    Article  Google Scholar 

  68. van den Berge M, Bhoelai B, Harteveld J, Matai A, Sijen T (2016) Advancing forensic RNA typing: on nontarget secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. Forensic Sci Int Genet 20:119–129

    Google Scholar 

  69. Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D (2013) Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet 7:316–320

    Article  CAS  Google Scholar 

  70. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The sequence of the human genome. Science 291: 1304–1351

    Google Scholar 

  71. Wang DY, Gopinath S, Lagace RE, Norona W, Hennessy LK et al (2015) Developmental validation of the GlobalFiler((R)) express PCR amplification kit: a 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci Int Genet 19:148–155

    Article  CAS  Google Scholar 

  72. Warshauer DH, Lin D, Hari K, Jain R, Davis C, Larue B et al (2013) STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 7:409–417

    Article  CAS  Google Scholar 

  73. Zagorski N (2006) Profile of Alec. J Jeffreys Proc Natl Acad Sci U S A 103:8918–8920

    Article  CAS  Google Scholar 

  74. Zech WD, Malik N, Thali M (2012) Applicability of DNA analysis on adhesive tape in forensic casework. J Forensic Sci 57:1036–1041

    Article  CAS  Google Scholar 

  75. Zietkiewicz E, Witt M, Daca P, Zebracka-Gala J, Goniewicz M, Jarzab B (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53:41–60

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Director of State Forensic Science Laboratory, Ranchi, Jharkhand, for the support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imam, J., Reyaz, R., Rana, A.K., Yadav, V.K. (2018). DNA Fingerprinting: Discovery, Advancements, and Milestones. In: Dash, H., Shrivastava, P., Mohapatra, B., Das, S. (eds) DNA Fingerprinting: Advancements and Future Endeavors. Springer, Singapore. https://doi.org/10.1007/978-981-13-1583-1_1

Download citation

Publish with us

Policies and ethics