Skip to main content

Lactic Acid Bacteria-Based Food Fermentations

  • Chapter
  • First Online:
Lactic Acid Bacteria in Foodborne Hazards Reduction

Abstract

Food fermentation is essential for human being throughout the history as fermented foods enrich our diets. In particular, lactic acid bacteria play important roles in food fermentation, and they present us with foods in diverse aromas, tastes and textures. These edible microorganisms are found in pickled vegetables, sausages, cheeses, yogurts, sourdough breads, et al. The practice of lactic acid bacteria-based food fermentations happened accidentally at the beginning, but soon spread out for multiple benefits including preservation, safety, nutrition and flavor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai, C., Q. Zhang, C. Ren, G. Wang, X. Liu, F. Tian, J. Zhao, H. Zhang, Y.Q. Chen, and W. Chen. 2014. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9 (10): e109461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ai, C., Q. Zhang, J. Ding, C. Ren, G. Wang, X. Liu, F. Tian, J. Zhao, H. Zhang, and Y.Q. Chen. 2015. Suppression of dust mite allergy by mucosal delivery of a hypoallergenic derivative in a mouse model. Applied Microbiology and Biotechnology 99 (10): 4309.

    Article  CAS  PubMed  Google Scholar 

  • Al-Dhaheri, A.S., R. AI-Hemeiri, J. Kizhakkayil, A. AI-Nabulsi, A. Abushelaibi, N.P. Shah, and M. Ayyash. 2017. Health-promoting benefits of low-fat akawi cheese made by exopolysaccharide-producing probiotic Lactobacillus plantarum isolated from camel milk. Journal of Dairy Science 100 (10): 7771–7779.

    Article  CAS  PubMed  Google Scholar 

  • Aidoo, K.E., M.J.R. Nout, and P.K. Sarkar. 2006. Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Research 6: 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Alessandria, V., I. Ferrocino, F.D. Filippis, et al. 2016. Microbiota of an Italian Grana-Like Cheese during manufacture and ripening, unraveled by 16S rRNA-Based approaches. Journal Applied & Environmental Microbiology 82 (13): 3988.

    Article  CAS  Google Scholar 

  • Alexander, B., and W. Patrick. 2001. The complete genome sequence of the acid bacterium lactococcus lactis ssp. lactis IL1403. Genome Research 11: 731–753.

    Article  Google Scholar 

  • Amatayakul, T., F. Sherkat, and N.P. Shah. 2006a. Physical characteristics of set yoghurt made with altered casein to whey protein ratios and EPS-producing starter cultures at 9 and 14% total solids. Food Hydrocolloids 20 (2–3): 314–324.

    Article  CAS  Google Scholar 

  • ———. 2006b. Syneresis in set yogurt as affected by EPS starter cultures and levels of solids. International Journal of Dairy Technology 59 (3): 216–221.

    Article  CAS  Google Scholar 

  • Badel, S., T. Bernardi, and P. Michaud. 2011. New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances 29 (1): 54–66.

    Article  CAS  PubMed  Google Scholar 

  • Beal, C., J. Skokanova, E. Latrille, et al. 1999. combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt. Journal of Dairy Science 82: 673–681.

    Article  CAS  Google Scholar 

  • Behare, P.V., R. Singh, M. Kumar, J.B. Prajapati, and R.P. Singh. 2009. Exopolysaccharides of lactic acid bacteria: A review. Journal of Food Science and Technology-Mysore 46 (1): 1–11.

    CAS  Google Scholar 

  • Bessmeltseva, M., E. Viiard, J. Simm, et al. 2014. Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation[J]. Plos One 9 (4): e95449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beuchat, L.R. 1983. Indigenous fermented foods. In Biotechnology, Food and feed production with microorganisms, ed. G. Reed. Weinheim: Verlag Chemie.

    Google Scholar 

  • Bhaskaracharya, R.K., and N.P. Shah. 2000. Texture characteristics and microstructure of skim milk mozzarella cheeses made using exopolysaccharide or non-exopolysaccharide producing starter cultures. Australian Journal of Dairy Technology 55 (3): 132–138.

    Google Scholar 

  • Björkroth, K.J., U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W.H. Holzapfel, H.J. Korkeala, and P. Vandamme. 2002. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. International Journal of Systematic & Evolutionary Microbiology 52 (Pt 1): 141.

    Article  Google Scholar 

  • Black, B.A., E. Zannini, J.M. Curtis, and M.G. Ganzle. 2013. Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread. Applied and Environmental Microbiology 79: 1866–1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blandino, A., M.E. Alaseeri, S.S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented foods and beverages. Food Research International 36 (6): 527–543.

    Article  CAS  Google Scholar 

  • Bleukx, W., K. Brijs, S. Torrekens, F. Van Leuven, and J.A. Delcour. 1998. Specificity of a wheat gluten aspartic proteinase. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1387: 317–324.

    Article  CAS  Google Scholar 

  • Bokulich, N.A., Bamforth, C.W., and Mills, D.A. 2012. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American Coolship Ale. PloS one 7 (4): e35507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———, N.A., Thorngate, J.H., Richardson, P.M., et al. 2014a. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences of the United States of America 111 (1): 139–148.

    Google Scholar 

  • ———, N.A., Ohta, M., Lee, M., et al. 2014b. Indigenous bacteria and fungi drive traditional kimoto sake fermentations. Journal of Applied & Environmental Microbiology 80 (17): 5522–9.

    Google Scholar 

  • ———, N.A., Bergsveinson, J., Ziola, B., et al. 2015. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Elife Sciences 4 (4): 4364–4366.

    Google Scholar 

  • Bouchereau, A., A. Aziz, F. Larher, and J. Martin-Tanguy. 1999. Polyamines and environmental challenges: recent development. Plant Science 140 (2): 103–125.

    Article  CAS  Google Scholar 

  • Bounaix, M.-S., V. Gabriel, S. Morel, H. Robert, P. Rabier, M. Remaud-Siméon, B. Gabriel, and C. Fontagné-Faucher. 2009. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. Journal of Agricultural and Food Chemistry 57: 10889–10897.

    Article  CAS  PubMed  Google Scholar 

  • Brijs, K., W. Bleukx, and J.A. Delcour. 1999. Proteolytic activities in Dormant Rye (Secale cereale L.) grain. Journal of Agricultural and Food Chemistry 47: 3572–3578.

    Article  CAS  PubMed  Google Scholar 

  • Broadbent, J.R., D.J. McMahon, D.L. Welker, C.J. Oberg, and S. Moineau. 2003. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review. Journal of Dairy Science 86 (2): 407–423.

    Article  CAS  PubMed  Google Scholar 

  • Calasso, M., D. Ercolini, L. Mancini, G. Stellato, F. Minervini, R.D. Cagno, et al. 2016. Relationships among house, rind and core microbiotas during manufacture of traditional italian cheeses at the same dairy plant. Food Microbiology 54: 115–126.

    Article  Google Scholar 

  • Callon, C., C. Delbès, F. Duthoit, et al. 2006. Application of SSCP–PCR fingerprinting to profile the yeast community in raw milk Salers cheeses. Systematic & Applied Microbiology 29 (2): 172.

    Article  CAS  Google Scholar 

  • Cao, J.L., J.X. Yang, Q.C. Hou, X. Haiyan, Y. Zheng, H.P. Zhang, and Liebing Zhang. 2017. Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT sequencing technology. Food Control 78: 14–23.

    Article  CAS  Google Scholar 

  • Chan, T.Y. 2010. Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicology Letters 200 (1–2): 107–108.

    PubMed  Google Scholar 

  • Chang, J.Y., and H.C. Chang. 2010. Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. Journal of Food Science 75 (2): M103.

    Article  CAS  PubMed  Google Scholar 

  • Chang, A.C., T.Y. Yang, and G.L. Riskowski. 2013. Changes in nitrate and nitrite concentrations over 24 h for sweet basil and scallions. Food Chemistry 136 (2): 955.

    Article  CAS  PubMed  Google Scholar 

  • Chavan, U.d., J.k. Chavan, and S.s. Kadam. 1988. Effect of fermentation on soluble proteins and in vitro protein digestibility of Sorghum, Green Gram and Sorghum-Green Gram Blends. Journal of Food Science 53: 1574–1575.

    Article  CAS  Google Scholar 

  • Chen, G. 2010. The history and development of Chinese pickles. Food and Fermentation Technology 46 (3): 1–5.

    Google Scholar 

  • Cho, Y.R., J.Y. Chang, and H.C. Chang. 2007. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology & Biotechnology 17 (1): 104–109.

    CAS  Google Scholar 

  • Christensen, J.E., E.G. Dudley, J.A. Pederson, and J.L. Steele. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76: 217–246.

    Article  CAS  PubMed  Google Scholar 

  • Clare, D.A., G.L. Catignani, and H.E. Swaisgood. 2003. Biodefence properties of milk: The role of antimicrobial proteins and peptides. Current Pharmaceutical Design 9: 1239–1255.

    Article  CAS  PubMed  Google Scholar 

  • Cocolin, L., and D. Ercolini. 2008. Molecular techniques in the microbial ecology of fermented foods. New York: Springer.

    Book  Google Scholar 

  • Cocolin, L., P. Dolci, and K. Rantsiou. 2011. Biodiversity and dynamics of meat fermentations: The contribution of molecular methods for a better comprehension of a complex ecosystem. Meat Science 89 (3): 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Cocolin, Luca, and Danilo Ercolini. 2015. Zooming into food-associated microbial consortia: A ‘cultural’ evolution. Current Opinion in Food Science 2: 43–50.

    Article  Google Scholar 

  • Cogan, T.M., and K.N. Jordan. 1994. Metabolism of Leuconostoc, Bacteria. Journal of Dairy Science 77 (77): 2704–2717.

    Article  CAS  Google Scholar 

  • Cogan, T.M., M. Barbosa, E. Beuvier, B. Bianchisalvadori, P.S. Cocconcelli, I. Fernandes, et al. 1997. Characterization of the lactic acid bacteria in artisanal dairy products. Journal of Dairy Research 64 (3): 409–421.

    Article  CAS  Google Scholar 

  • Czerny, M., and P. Schieberle. 2002. Important aroma compounds in freshly ground whole meal and white wheat flour identification and quantitative changes during Sourdough fermentation. Journal of Agricultural and Food Chemistry 50: 6835–6840.

    Article  CAS  PubMed  Google Scholar 

  • Danielam, S., T. Adnany, P. Analúciaops, et al. 2010. The viability of three probiotic organisms grown with yoghurt starter cultures during storage for 21 days at 4°C. International Journal of Dairy Technology 62: 397–404.

    Google Scholar 

  • De Filippis, F., A. Genovese, P. Ferranti, et al. 2016. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Scientific Reports 6: 21871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pasquale, I., M. Calasso, L. Mancini, et al. 2014a. Causal relationship between microbial ecology dynamics and proteolysis during manufacture and ripening of protected designation of origin (PDO) cheese Canestrato Pugliese. Applied and environmental microbiology 80 (14): 4085–4094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pasquale, I., R. Di Cagno, S. Buchin, et al. 2014b. Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata caciocavallo pugliese cheese. Applied and Environmental Microbiology 80 (19): 6243–6255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vuyst, L., and P. Neysens. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science and Technology 16: 43–56.

    Article  CAS  Google Scholar 

  • De Vuyst, L., F. De Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal 11 (9SI): 687–707.

    Article  Google Scholar 

  • Delong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.U. Frigaard, A. Martinez, M.B. Sullivan, R. Edwards, and B.R. Brito. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311 (5760): 496.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch. Microbiology and biochemistry of cheese and fermented milk – Springer. Springer US.

    Google Scholar 

  • Dolci, P., F. De Filippis, A. La Storia, D. Ercolini, and L. Cocolin. 2014. rRNA-based monitoring of the micro- biota involved in Fontina PDO cheese production in relation to different stages of cow lactation. International Journal of Food Microbiology 185: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Đorđević, T.M., S.S. Šiler-Marinković, and S.I. Dimitrijević-Branković. 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food and Chemical 119: 957–963.

    Article  CAS  Google Scholar 

  • Dugatbony, E., C. Straub, A. Teissandier, et al. 2014. Overview of a surface-ripened cheese community functioning by meta-omics analyses. Plos One 10 (4): e0124360.

    Article  CAS  Google Scholar 

  • Dykes, L., and L.W. Rooney. 2006. Sorghum and millet phenols and antioxidants. Journal of Cereal Science 44: 236–251.

    Article  CAS  Google Scholar 

  • Ehrmann, M.A., and R.F. Vogel. 1998. Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiology Letters 169: 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Ercolini, D., F.D. Filippis, A.L. Storia, et al. 2012. “Remake” by high-throughput sequencing of the microbiota involved in the production of water Buffalo Mozzarella cheese. Applied & Environmental Microbiology 78 (22): 8142–8145.

    Article  CAS  Google Scholar 

  • Fan, L. 1991. Study on the lactic acid fermentation of tomato juice. Food & Fermentation Industries 2: 22–29.

    Google Scholar 

  • Fanning, S., L.J. Hall, M. Cronin, A. Zomer, J. MacSharry, D. Goulding, M.O. Motherway, F. Shanahan, K. Nally, G. Dougan, and D. van Sinderen. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences of the United States of America 109 (6): 2108–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnworth, E.R. 2005. The beneficial effects of fermented foods-potential probiotics around the world. Journal of Dietary Supplements 4: 3–4.

    Google Scholar 

  • Fei, Y., D. Liu, T. Luo, G. Chen, H. Wu, L. Li, and Y. Yu. 2014. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity. PLoS One 9 (11): e113792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández, M., and M. Zúñiga. 2006. Amino acid catabolic pathways of lactic acid bacteria. Critical Reviews in Microbiology 32 (3): 155.

    Article  PubMed  CAS  Google Scholar 

  • Fleming, H.P., R.F. Mcfeeters, and E.G. Humphries. 1988. A fermentor for study of sauerkraut fermentation. Biotechnology & Bioengineering 31 (3): 189.

    Article  CAS  Google Scholar 

  • Forss, D.A. 1979. Review of the progress of dairy science: Mechanisms of formation of aroma compounds in milk and milk products. Journal of Dairy Research 46 (4): 691–706.

    Article  CAS  Google Scholar 

  • Forss, D.A., and S. Patton. 1966. Flavor of cheddar cheese. Journal of Dairy Science 49 (1): 89.

    Article  CAS  PubMed  Google Scholar 

  • Fuka, M.M., S. Wallisch, M. Engel, et al. 2013. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe’s milk cheeses. Plos One 8 (11): e80734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gänzle, M.G. 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology 37: 2–10.

    Article  PubMed  CAS  Google Scholar 

  • Gänzle, M.G., and R. Follador. 2012. Metabolism of Oligosaccharides and starch in Lactobacilli: A review. Food Microbiology 3.

    Google Scholar 

  • Gänzle, M.G., J. Loponen, and M. Gobbetti. 2008. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science and Technology 19: 513–521.

    Article  CAS  Google Scholar 

  • Gebruers, K., E. Dornez, Z. Bedõ, M. Rakszegi, C.M. Courtin, and J.A. Delcour. 2010. Variability in Xylanase and Xylanase inhibition activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. Journal of Agricultural and Food Chemistry 58: 9362–9371.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, J.G., L. Salichos, J.C. Slot, D.C. Rinker, K.L. Mcgary, J.G. King, et al. 2012. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus. Current Biology Cb 22 (15): 1403–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons, J.G., and D.C. Rinker. 2015. The genomics of microbial domestication in the fermented food environment. Current Opinion in Genetics & Development 35: 1–8.

    Article  CAS  Google Scholar 

  • Goesaert, H., K. Brijs, J.A. Delcour, K. Gebruers, W.S. Veraverbeke, and C.M. Courtin. 2005. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology; Official Journal of European Federation of Food Science and Technology. EFFoST; International Union of Food Science and Technology IUFoST 16: 12–30.

    CAS  Google Scholar 

  • Guyot, J.P., and J. Morlon-Guyot. 2001. Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, an amylolytic lactobacillus isolated from sour starch cassava fermentation. International Journal of Food Microbiology 67: 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Halász, A., Á. Baráth, L. Simon-Sarkadi, and W. Holzapfel. 1994. Biogenic amines and their production by microorganisms in food. Trends in Food Science & Technology 5 (94): 42–49.

    Article  Google Scholar 

  • Han, Y., B. Kim, J. Ban, J. Lee, B.J. Kim, B.S. Choi, S. Hwang, K. Ahn, and J. Kim. 2012. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatric Allergy & Immunology 23 (7): 667–673.

    Article  Google Scholar 

  • Hashimoto, T. 2001. The cause on the abnormal accmulation of nitrite in pickles of Chinese cabbage (Brassica pekinesis Rupr). Nippon Shokuhin Kogyo Gakkaishi 48 (6): 409–415.

    Article  CAS  Google Scholar 

  • Hassan, A.N. 2008. ADSA foundation scholar award: Possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. Journal of Dairy Science 91 (4): 1282–1298.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, A.N., J.F. Frank, E.H. Marth, et al. 2001. Starter cultures and their use. Applied Dairy Microbiology.

    Google Scholar 

  • He, Ping, Z. Jia, and Z. Cheng. 2006. Dairy food processing technology. Beijing: China Light Industry Press.

    Google Scholar 

  • ———. 2004. Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Current Microbiology 49: 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, E.M., G. Mamone, G. Picariello, R.R. Raya, G.S. De Giori, P. Ferranti, and F. Addeo. 2008. Characterization of the pattern of αs1- and β-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Applied and Environmental Microbiology 74: 3682–3689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert, E.M., L. Saavedra, and P. Ferranti. 2010. Bioactive peptides derived from casein and whey proteins. In Biotechnology of lactic acid bacteria: Novel applications, ed. F. Mozzi, R. Raya, and G. Vignolo, 233–249. Ames: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Hemme, D., and C. Foucaud. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional food. International Dairy Journal 14: 467–494.

    Article  Google Scholar 

  • Hesseltine, C.W., and M.L. Ray. 1988. Lactic acid bacteria in murcha and ragi. The Journal of Applied Bacteriology 64: 395–401.

    Article  Google Scholar 

  • Hole, A.S., I. Rud, S. Grimmer, S. Sigl, J. Narvhus, and S. Sahlstrøm. 2012. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry 60: 6369–6375.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Tao, G. Jia, L. Li, Y. Su, et al. 2010. Influence of Streptococcus thermopiles on the fermentation process of yogurt and the application prospects. Forum and Summary 29: 5–8.

    Google Scholar 

  • Hounhouigan, D.J., M.J.R. Nout, C.M. Nago, J.H. Houben, and F.M. Rombouts. 1994. Microbiological changes in mawe during natural fermentation. World Journal of Microbiolgy and Biotechnology 10: 410–413.

    Article  CAS  Google Scholar 

  • ———. 1999. Use of starter cultures of lactobacilli and yeast in the fermentation of mawe, an African maize product. Tropical Science 39: 220–226.

    Google Scholar 

  • Hou, Cai J., C.Z. Long, and Z. Chen. 2013. Nitrite level of pickled vegetables in Northeast China. Food Control 29 (1): 7–10.

    Article  CAS  Google Scholar 

  • Hu, Y., A. Stromeck, J. Loponen, D. Lopes-Lutz, A. Schieber, and M.G. Gänzle. 2011. LC-MS/MS quantification of bioactive angiotensin I-Converting enzyme inhibitory peptides in Rye Malt sourdoughs. Journal of Agricultural and Food Chemistry 59: 11983–11989.

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz, J., and M. Kleerebezem. 1999. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Current Opinion in Biotechnology 10 (5): 492–497.

    Article  CAS  PubMed  Google Scholar 

  • Irlinger, F., and J. Mounier. 2009. Microbial interactions in cheese: Implications for cheese quality and safety. Current Opinion in Biotechnology 20 (2): 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto, K., H. Tsuruta, and Y.R. Nishitaini. 2008. Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum atcc 14917 super(t). Systematic and Applied Microbiology 31 (4): 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Jänsch, A., M. Korakli, R.F. Vogel, and M.G. Gänzle. 2007. Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: Contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs. Applied and Environmental Microbiology 73: 4469–4476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong, S.H., J.Y. Jung, S.H. Lee, H.M. Jin, and C.O. Jeon. 2013. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. International Journal of Food Microbiology 164 (1): 46.

    Article  CAS  PubMed  Google Scholar 

  • Ji, Y.S., H.N. Kim, H.J. Park, J.E. Lee, S.Y. Yeo, J.S. Yang, S.Y. Park, H.S. Yoon, G.S. Cho, and C.M. Franz. 2012. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Beneficial Microbes 3 (1): 13.

    Article  CAS  PubMed  Google Scholar 

  • Jolly, L., and F. Stingele. 2001. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. International Dairy Journal 11 (9SI): 733–745.

    Article  CAS  Google Scholar 

  • Jung, J.Y., S.H. Lee, J.M. Kim, M.S. Park, J.W. Bae, Y. Hahn, et al. 2011. Metagenomic analysis of kimchi, a traditional korean fermented food. Applied and Environmental Microbiology 77 (7): 2264–2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, J.Y., S.H. Lee, H.J. Lee, H.Y. Seo, W.S. Park, and C.O. Jeon. 2012a. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology 153 (3): 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J.Y., S.H. Lee, H.J. Lee, H. Seo, W. Park, and C.O. Jeon. 2012b. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology 153 (3): 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Jung, M.J., Y.D. Nam, S.W. Roh, and J.W. Bae. 2012a. Unexpected convergence of fungal and bacterial communities during fermentation of traditional korean alcoholic beverages inoculated with various natural starters. Food Microbiology 30 (1): 112–123.

    Article  PubMed  Google Scholar 

  • Jung, M.J., Y.D. Nam, S.W. Roh, and J.W. Bae. 2012b. Unexpected convergence of fungal and bacterial communities during fermentation of traditional korean alcoholic beverages inoculated with various natural starters. Food Microbiology 30 (1): 112–123.

    Article  PubMed  Google Scholar 

  • Jung, J.Y., S.H. Lee, H.M. Jin, Y. Hahn, E.L. Madsen, and C.O. Jeon. 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. International Journal of Food Microbiology 163 (2–3): 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Kalac, P., J. Spicka, M. Krizek, and T. Pelikanova. 2000. Changes in biogenic amine concentrations during sauerkraut storage. Food Chemistry 69 (69): 309–314.

    Article  CAS  Google Scholar 

  • Kalač, P., J. Špička, M. KřıŽek, and T. Pelikánová. 2000. The effects of lactic acid bacteria inoculants on biogenic amines formation in sauerkraut. Food Chemistry 70 (3): 355–359.

    Article  Google Scholar 

  • Katina, K., A. Laitila, R. Juvonen, K.-H. Liukkonen, S. Kariluoto, V. Piironen, R. Landberg, P. Åman, and K. Poutanen. 2007. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiology 24: 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Kayode, A.P.P., D.J. Hounhouigan, and M.J.R. Nout. 2007. Impact of brewing process operations on phytate, phenolic compounds and in-vitro solubility of iron and zinc in opaque sorghum beer. Leben Smittel- Wissensc Haftund Technologie 40: 834–841.

    Article  CAS  Google Scholar 

  • Kenny, O.M., R.J. Fitzgerald, G. O’Cuinn, T.P. Beresford, and K.N. Jordan. 2003. Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus. International Dairy Journal 13: 509–516.

    Article  CAS  Google Scholar 

  • Khalid, N.M., M. El-Soda, and E.H. Marth. 1991. Peptidase hydrolases of Lactobacillus helveticus and Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Science 74: 29–45.

    Article  CAS  Google Scholar 

  • Kim, M., and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. International Journal of Food Microbiology 103 (1): 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Hannah, Hyunjoon Park, Jieun Lee, Heejae Lee, and Heuynkil Shin. 2013. Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31 (2): 467–473.

    Article  CAS  Google Scholar 

  • Knight, S., S. Klaere, B. Fedrizzi, and M.R. Goddard. 2015. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Scientific Reports 5 (14233): 14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, Y., S. Okamoto, T. Shimazaki, Y. Ochiai, and F. Sato. 1987. Synthesis and physiological activities of both enantiomers of coriolic acid and their geometric isomers. Tetrahedron Letters 28: 3959–3962.

    Article  CAS  Google Scholar 

  • Kook, M.C., and M.J. Seo. 2010. Enhancement of γ-amminobutyric acid production by Lactobacillus sakei B2–16 expressing glutamate decarboxylase from Lactobacillus plantarum ATCC 14917. Applied Biological Chemistry 53 (6): 816–820.

    CAS  Google Scholar 

  • Korhonen, H., and A. Pihlanto. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16 (9): 945–960.

    Article  CAS  Google Scholar 

  • Koyanagi, T., M. Kiyohara†, H. Matsui, K. Yamamoto, T. Kondo, T. Katayama, et al. 2011. Pyrosequencing survey of the microbial diversity of ‘ narezushi ’, an archetype of modern japanese sushi. Letters in Applied Microbiology 53 (6): 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi, T., A. Nakagawa, M. Kiyohara, H. Matsui, K. Yamamoto, F. Barla, et al. 2013. Pyrosequencing analysis of microbiota in kaburazushi, a traditional medieval sushi in Japan. Bioscience Biotechnology & Biochemistry 77 (10): 2125–2130.

    Article  CAS  Google Scholar 

  • Kunji, E.R.S., I. Mierau, A. Hagting, B. Poolman, and W.N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70: 187–221.

    Article  CAS  PubMed  Google Scholar 

  • Lamothe, G.T., L. Jolly, B. Mollet, and F. Stingele. 2002. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp bulgaricus. Archives of Microbiology 178 (3): 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Law, B.A., M. Castanon, and M.E. Sharpe. 1976. The effect of non-starter bacteria on the chemical composition and the flavour of Cheddar cheese. Journal of Dairy Research 43 (1): 117–125.

    Article  CAS  Google Scholar 

  • Laws, A.P., and V.M. Marshall. 2001. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. International Dairy Journal 11 (9SI): 709–721.

    Article  CAS  Google Scholar 

  • Lee, J., K.T. Hwang, M.S. Heo, J.H. Lee, and K.Y. Park. 2005. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. Journal of Medicinal Food 8 (3): 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., H. Yoon, Y. Ji, H. Kim, H. Park, J. Lee, H. Shin, and W. Holzapfel. 2011. Functional properties of Lactobacillus strains isolated from kimchi. International Journal of Food Microbiology 145 (1): 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Leroy, F., and L. De Vuyst. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 15: 67–78.

    Article  CAS  Google Scholar 

  • Lessard, M., C. Viel, B. Boyle, et al. 2014. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese. BMC Genomics 15 (1): 1–13.

    Article  CAS  Google Scholar 

  • Lestienne, I., P. Besancon, B. Caporiccio, V. Lullien-Pellerin, and S. Treche. 2005. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. Journal of Agricultural and Food Chemistry 53: 3240–3247.

    Article  CAS  PubMed  Google Scholar 

  • Lhomme, E., A. Lattanzi, X. Dousset, et al. 2015a. Lactic acid bacterium and yeast microbiotas of sixteen French traditional sourdoughs. International Journal of Food Microbiology 215: 161.

    Article  CAS  PubMed  Google Scholar 

  • Lhomme, E., S. Orain, P. Courcoux, et al. 2015b. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics[J]. International Journal of Food Microbiology 213: 40.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Q. Xu, T. Jiang, S. Fang, G. Wang, J. Zhao, H. Zhang, and W. Chen. 2016. A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food & Function 7 (12): 4851.

    Article  CAS  Google Scholar 

  • Liu, S.Q., R.V. Asmundson, R. Holland, and V.L. Crow. 1997. Acetaldehyde metabolism by Leuconostoc mesenteroides subsp. cremoris under stress conditions. International Dairy Journal 7: 175–183.

    Article  CAS  Google Scholar 

  • Looijesteijn, P.J., W. van Casteren, R. Tuinier, C. Doeswijk-Voragen, and J. Hugenholtz. 2000. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp cremoris in continuous cultures. Journal of Applied Microbiology 89 (1): 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Loponen, J., P. Kanerva, C. Zhang, T. Sontag-Strohm, H. Salovaara, and M.G. Gänzle. 2009. Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. Journal of Agricultural and Food Chemistry 57: 746–753.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z.H., L.T. Li, W.H. Min, F. Wang, and E. Tatsumi. 2005. The effects of natural fermentation on the physical properties of reice flour and the rheological characteristics of rice noodles. International Journal of Food Science and Technology 40: 985–992.

    Article  CAS  Google Scholar 

  • Martinez-Murcia, A.J., and M.D. Collins. 1990. A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. International Journal of Systematic Bacteriology 58 (1): 73–83.

    CAS  Google Scholar 

  • Marshall, V.M.E., and A.Y. Tamime. 1997. Physiology and biochemistry of fermented milks. Microbiology and biochemistry of cheese and fermented milk, 153–192. Boston: Springer.

    Chapter  Google Scholar 

  • Marsh, A.J., O. O’Sullivan, C. Hill, R.P. Ross, and P.D. Cotter. 2013. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One 8 (7): e69371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38 (2): 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Matar, C., J.G. LeBlanc, L. Martin, and G. Perdigon. 2003. Biologically active peptides released from fermented milk: Role and functions. In Handbook of fermented functional foods, ed. E.R. Farnworth, 1st ed., 177–201. Boca Raton: CRC Press.

    Google Scholar 

  • Meisel, H. 2004. Multifunctional peptides encrypted in milk proteins. BioFactors 21: 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Minervini, F., A. Lattanzi, M. De Angelis, G. Celano, and M. Gobbetti. 2015. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs. Food Microbiology 52: 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Moller, M.S., F. Fredslund, A. Majumder, H. Nakai, J.-C.N. Poulsen, L. Lo Leggio, B. Svensson, and M. Abou Hachem. 2012. Enzymology and structure of the GH13_31 glucan 1,6- -glucosidase that confers Isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. Journal of Bacteriology 194: 4249–4259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montel, M.C., S. Buchin, A. Mallet, C. Delbes-Paus, D.A. Vuitton, N. Desmasures, et al. 2014. Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology 177 (54): 136–154.

    Article  PubMed  Google Scholar 

  • Mouquet, R.C., V.C. Icard, J.P. Guyot, T.E. Hassane, I. Rochette, and S. Treche. 2008. Consumption pattern, biochemical composition and nutritional value of fermented pearl millet gruels in Burkina Faso. International Journal of Food Science and .Nutrition 59: 716–729.

    Article  CAS  Google Scholar 

  • Muganga, L., X. Liu, F. Tian, et al. 2015. Screening for lactic acid bacteria based on antihyperglycaemic and probiotic potential and application in synbiotic set yoghurt. Journal of Functional Foods 16: 125–136.

    Article  CAS  Google Scholar 

  • Nakai, H., M.J. Baumann, B.O. Petersen, Y. Westphal, H. Schols, A. Dilokpimol, M.A. Hachem, S.J. Lahtinen, J.Ø. Duus, and B. Svensson. 2009. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. The FEBS Journal 276: 7353–7365.

    Article  CAS  PubMed  Google Scholar 

  • Nout, M.J.R. 1987. Chemical composition and nutrient balance of Busaa, a Kenyan opaque maize beer. Chem. Mikrobiol. Technol. Lebensm. 11: 51–55.

    CAS  Google Scholar 

  • Nout, M.J.R., P.K. Sarkar, and L.R. Beuchat. 2007. Indigenous fermented foods. In Food microbiology: Fundamentals and Frontiers, ed. M.P. Doyle and L.R. Beuchat, 817–835. Washington, DC: ASM Press.

    Google Scholar 

  • Nout, M.J.R. 2009. Rich nutrition from the poorest – Cereal fermentations in Africa and Asia. Food Microbiology 26: 685–692.

    Article  PubMed  Google Scholar 

  • O’Sullivan, D.J., P.D. Cotter, O. O’Sullivan, L. Giblin, P.L. McSweeney, and J.J. Sheehan. 2015. Temporal and spatial differences in microbial composition during the manufacture of a continental-type cheese. Applied and Environmental Microbiology 81: 2525–2533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh, C.K., M.C. Oh, and S.H. Kim. 2004. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi. Journal of Medicinal Food 7 (1): 38.

    Article  CAS  PubMed  Google Scholar 

  • Peant, B., G. LaPointe, C. Gilbert, D. Atlan, P. Ward, and D. Roy. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology-Sgm 151 (6): 1839–1851.

    Article  CAS  Google Scholar 

  • Pederson, C. S. 1969. Bulletin: Number 824: The Sauerkraut Fermentation.

    Google Scholar 

  • Peñas, E., J. Frias, B. Sidro, and C. Vidal-Valverde. 2010. Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chemistry 123 (1): 143–150.

    Article  CAS  Google Scholar 

  • Pérez-Díaz, I.M., J. Hayes, E. Medina, K. Anekella, K. Daughtry, S. Dieck, M. Levi, R. Price, N. Butz, Z. Lu, and M.A. Azcarate-Peril. 2017. Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiology 63: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Plengvidhya, V., F. Breidt Jr., Z. Lu, and H.P. Fleming. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology 73 (23): 7697–7702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poutanen, K., L. Flander, and K. Katina. 2009. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology 26: 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Purwandari, U., N.P. Shah, and T. Vasiljevic. 2007. Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. International Dairy Journal 17 (11): 1344–1352.

    Article  CAS  Google Scholar 

  • Rabie, M.A., H. Siliha, S. El-Saidy, A.A. El-Badawy, and F.X. Malcata. 2011. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chemistry 129 (4): 1778–1782.

    Article  CAS  Google Scholar 

  • Ragaee, S., E.-S.M. Abdel-Aal, and M. Noaman. 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry 98: 32–38.

    Article  CAS  Google Scholar 

  • Rasmussen, C.V., H. Boskov Hansen, Å. Hansen, and L. Melchior Larsen. 2001. pH-, temperature- and time-dependent activities of endogenous Endo-β-D-Xylanase, β-D-Xylosidase and α-L-Arabinofuranosidase in extracts from Ungerminated Rye (Secale cereale L.) Grain. J. Cereal Science 34: 49–60.

    Article  CAS  Google Scholar 

  • Rizzello, C.G., I. Cavoski, J. Turk, et al. 2015. The organic cultivation of Triticum turgidum spp. durum reflects on the axis flour, sourdough fermentation and bread. Applied & Environmental Microbiology 81: 3192–3204.

    Article  CAS  Google Scholar 

  • Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 12 (PII S0958-6946(01)00160-12-3SI): 163–171.

    Article  CAS  Google Scholar 

  • Sánchez, E., J.C. Nieto, S. Vidal, et al. 2017. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 reduces bacterial translocation in rats treated with carbon tetrachloride. Journal of Hepatology 7: S333.

    Google Scholar 

  • Sang, H.J., S.H. Lee, Y.J. Ji, E.J. Choi, and O.J. Che. 2013. Microbial succession and metabolite changes during long-term storage of Kimchi. Journal of Food Science 78 (5): M763–M769.

    Article  CAS  Google Scholar 

  • Savijoki, K., H. Ingmer, and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology 71: 394–406.

    Article  CAS  PubMed  Google Scholar 

  • Seok, J.H., K.B. Park, Y.H. Kim, M.O. Bae, M.K. Lee, and S.H. Oh. 2008. Production and characterization of Kimchi with enhanced levels of γ-Aminobutyric acid. Food Science & Biotechnology 17 (5): 940–946.

    CAS  Google Scholar 

  • Settanni, Luca, and Aldo Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology 121 (2): 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Shewry, P.R., V. Piironen, A.-M. Lampi, M. Edelmann, S. Kariluoto, T. Nurmi, R. Fernandez-Orozco, A.A.M. Andersson, P. Aman, A. Fraś, et al. 2010. Effects of genotype and environment on the content and composition of phytochemicals and dietary fiber components in rye in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 58: 9372–9383.

    Article  CAS  PubMed  Google Scholar 

  • Sieuwerts, S., F.A. de Bok, J. Hugenholtz, and V.H.V. Je. 2008. Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Applied and Environmental Microbiology 74 (16): 4997–5007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sifer, M., Vernie’re, C., Galissaires, L., Castro, A., Lopez, G., Wacher, C. and Guyot, J. P. 2005. DGGE community analysis of lactic acid fermented pearl millet-based infant gruels (ben-saalga, ben-kida) as a tool to characterize relatedness between traditional small-scale production units. In: 8th Symposium on Bacterial Genetics and Ecology, BAGECO-8. vol. 8, pp. 1. Lyon, France.

    Google Scholar 

  • Silva, S., and X. Malcata. 2005. Caseins as source of bioactive peptides. International Dairy Journal 15: 1–15.

    Article  CAS  Google Scholar 

  • Singh, A.K., J. Rehal, A. Kaur, and G. Jyot. 2015. Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition 55: 1575–1589.

    Article  CAS  PubMed  Google Scholar 

  • Soni, S.K., and D.K. Sandhu. 1999. Fermented cereal products. In Biotechnology: Food fermentation, ed. V.K. Joshi and A. Pandey, 895–949. Ernakulam: Educational Publishers.

    Google Scholar 

  • Songré-Ouattara, L.T., C. Mouquet-Rivier, C. Icard-Vernière, C. Humblot, B. Diawara, and J.P. Guyot. 2008. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. International Journal of Food Microbiology 128: 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Spoelstra, S.F. 1985. Nitrate in silage. Grass & Forage Science 40 (1): 1–11.

    Article  CAS  Google Scholar 

  • Steinkraus, K. H. 1996. Handbook of indigenous fermented foods. 2nd ed., rev. and expanded. Food Science and Technology. USA No 73.

    Google Scholar 

  • Stellato, G., F.F. De, S.A. La, et al. 2015. Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy-processing environment. Applied & Environmental Microbiology 81 (22): 7893–7904.

    Article  CAS  Google Scholar 

  • Stingele, F., J.R. Neeser, and B. Mollet. 1996. Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. Journal of Bacteriology 178 (6): 1680–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z., W. Liu, Q. Bao, J. Zhang, Q. Hou, L. Kwok, et al. 2014. Investigation of bacterial and fungal diversity in tarag using high-throughput sequencing. Journal of Dairy Science 97 (10): 6085–6096.

    Article  CAS  PubMed  Google Scholar 

  • Svensson, L., B. Sekwati-Monang, D.L. Lutz, A. Schieber, and M.G. Gänzle. 2010. Phenolic acids and flavonoids in nonfermented and fermented Red Sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry 58: 9214–9220.

    Article  CAS  PubMed  Google Scholar 

  • Szwajkowska, M., A. Wolanciuk, J. Barłowska, J. Król, and Z. Litwiñczuk. 2011. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system – A review. Animal Science Papers and Reports 29: 269–280.

    CAS  Google Scholar 

  • Tamang, J.P., P.K. Sarkar, and C.W. Hesseltine. 1988. Traditional fermented foods and beverages of Darjeeling and Sikkim – A review. Journal of Science and Food Agriculture 44: 375–385.

    Article  Google Scholar 

  • Tamime, A. Y. and McNulty, D. 1999. Kishkda dried fermented milk/cereal mixture. 4. Microbiological quality. Lait. 79:449–456.

    Article  Google Scholar 

  • Tamime, A.Y., R.K. Robinson, A.Y. Tamime, et al. 2007. Biochemistry of fermentation.[M]// Tamime and Robinson’s Yoghurt. 535–607.

    Google Scholar 

  • Tanous, Catherine, Agnieszka Kieronczyk, Sandra Helinck, et al. 2002. Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie van Leeuwenhoek 82 (1–4): 271.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, J.R.N., T.J. Schober, and S.R. Bean. 2006. Novel food and non-food uses for sorghum and millets. Journal of Cereal Science 44: 252–271.

    Article  CAS  Google Scholar 

  • Thiele, C., S. Grassl, and M. Ganzle. 2004. Gluten hydrolysis and Depolymerization during sourdough fermentation. Journal of Agricultural and Food Chemistry 52: 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. 1987. Regulation of sugar transport and metabolism in lactic acid bacteria[J]. FEMS Microbiology Letters 46 (3): 221–231.

    Article  CAS  Google Scholar 

  • Tian, F., Y. Xiao, X. Li, et al. 2015. Protective effects of Lactobacillus plantarum CCFM8246 against copper toxicity in mice. PLoS One 10 (11): e0143318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tou, E.H., J.P. Guyot, C. Mouquet-Rivier, I. Rochette, E. Counil, A.S. Traoré, and S. Treche. 2006. Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso. International Journal of Food Microbiology 106: 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Turpin, W., C. Humblot, and J. Guyot. 2011. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Applied and Environmental Microbiology 77: 8722–8734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaningelgem, F., M. Zamfir, T. Adriany, and L. De Vuyst. 2004. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. Journal of Applied Microbiology 97 (6): 1257–1273.

    Article  CAS  PubMed  Google Scholar 

  • Vedamuthu, E.R. 1994. The dairy Leuconostoc: Use in dairy products. Journal of Dairy Science 77 (9): 2725–2737.

    Article  Google Scholar 

  • Vilela, D.M., G.V. Pereira, C.F. Silva, L.R. Batista, and R.F. Schwan. 2010. Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (coffea arabica l.). Food Microbiology 27 (8): 1128–1135.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, R.F., M. Lohmann, A.N. Weller, M. Hugas, and W.P. Hammes. 1991. Structural similarity and distribution of small cryptic plasmids of Lactobacillus curvatus and L. sake. Fems Microbiology Letters 68 (2): 183.

    Article  CAS  PubMed  Google Scholar 

  • Vos, W.M., and E.E. Vaughan. 1994. Genetics of lactose utilization in lactic acid bacteria[M]. FEMS Microbiology Reviews.: 217–237.

    Article  PubMed  Google Scholar 

  • Ward, D.M., R. Weller, and M.M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345 (6270): 63–65.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Dong, B. Wen, Z. Gui Hong, and L. Feng. 2009. Characteristics of Lactobacillus bulgaricus and its application. Forum and Summary 28: 10–14.

    Google Scholar 

  • Welman, A.D., and I.S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology 21 (6): 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Widder, S., R.J. Allen, T. Pfeiffer, et al. 2016. Challenges in microbial ecology: Building predictive understanding of community function and dynamics. ISME Journal 10 (11): 2557–2568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiology 24: 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Wisselink, H.W., R.A. Weusthuis, G. Eggink, J. Hugenholtz, and G.J. Grobben. 2002. Mannitol production by lactic acid bacteria: A review. International Dairy Journal 12 (2–3): 151–161.

    Article  CAS  Google Scholar 

  • Wolfe, B.E., J.E. Button, M. Santarelli, et al. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158 (2): 422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters, J.T.M., E.H.E. Ayad, J. Hugenholtz, et al. 2002. Microbes from raw milk for fermented dairy products. International Dairy Journal 12 (2): 91–109.

    Article  CAS  Google Scholar 

  • Wu, Q., C.K.W. Cheung, and N.P. Shah. 2015. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: Challenges and strategies. Trends in Food Science & Technology 41 (1): 24–36.

    Article  CAS  Google Scholar 

  • Xia, Y., X. Liu, G. Wang, H. Zhang, Z. Xiong, Y. Sun, and L. Ai. 2017. Characterization and selection of lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control 78: 126–131.

    Article  CAS  Google Scholar 

  • Xing, J., G. Wang, Q. Zhang, X. Liu, Z. Gu, H. Zhang, Y.Q. Chen, and W. Chen. 2015. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: A comparison with traditional methods. PLoS One 10 (3): e0119058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong, T., F. Peng, Y.Y. Liu, Y.J. Deng, X.Y. Wang, and M.Y. Xie. 2014. Fermentation of Chinese sauerkraut in pure culture and binary co-culture with Leuconostoc mesenteroides and Lactobacillus plantarum. Lwt-Food Science and Technology 59 (2): 713–717.

    Article  CAS  Google Scholar 

  • Yang, X. 2004. Study on the control of nitrite content in the pickled of potherb mustard. Journal of Chinese Institute of Food Science & Technology 4 (1): 48–51.

    Google Scholar 

  • Yu, Ru Y. 2014. Dairy and beverage technology. Beijing: China Light Industry Press.

    Google Scholar 

  • Yvon, M., and L. Rijnen. 2001. Cheese flavour formation by amino acid catabolism. International Dairy Journal 11 (4): 185–201.

    Article  CAS  Google Scholar 

  • Zhai, Q., G. Wang, J. Zhao, X. Liu, F. Tian, H. Zhang, and W. Chen. 2013. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Applied & Environmental Microbiology 79 (5): 1508.

    Article  CAS  Google Scholar 

  • Zhai, Q., G. Wang, J. Zhao, X. Liu, A. Narbad, Y.Q. Chen, H. Zhang, F. Tian, and W. Chen. 2014. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Applied & Environmental Microbiology 80 (13): 4063–4071.

    Article  CAS  Google Scholar 

  • Zhai, Q., Y. Xiao, F. Tian, et al. 2015a. Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice. RSC Advances 5 (6): 4648–4658.

    Article  CAS  Google Scholar 

  • Zhai, Q., R. Yin, L. Yu, G. Wang, F. Tian, R. Yu, J. Zhao, X. Liu, Y.Q. Chen, and H. Zhang. 2015b. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control 54: 23–30.

    Article  CAS  Google Scholar 

  • Zhang, W.X., Z.W. Qiao, Y.Q. Tang, C. Hu, Q. Sun, S. Morimura, and K. Kida. 2007. Analysis of the fungal community in zaopei during the production of Chinese Luzhou-flavour liquor. Journal of the Institute of Brewing 113: 21–27.

    Article  CAS  Google Scholar 

  • 박건영, & 최홍식. 1992. Kimchi and Nitrosamines. Journal of the Korean Society of Food & Nutrition 21 (1): 109–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., Narbad, A. (2018). Lactic Acid Bacteria-Based Food Fermentations. In: Lactic Acid Bacteria in Foodborne Hazards Reduction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1559-6_6

Download citation

Publish with us

Policies and ethics