Skip to main content

Spin-Off Application of Silica Aerogel in Space: Capturing Intact Cosmic Dust in Low-Earth Orbits and Beyond

  • Conference paper
  • First Online:
Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 (TIPP 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 212))

  • 1059 Accesses

Abstract

A spin-off application of transparent, low-density silica aerogel as a dust-capture medium in space is described. We provide an overview of the physics behind the hypervelocity capture of dust using aerogels and chronicle their history of use as dust collectors. In addition, recent developments regarding the high-performance aerogel used in the Tanpopo mission are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantin, M., et al.: Silica aerogels used as Cherenkov radiators. Nucl. Instrum. Meth. 118, 177–182 (1974)

    Article  ADS  Google Scholar 

  2. Adachi, I., et al.: Construction of silica aerogel radiator system for Belle II RICH counter. Nucl. Instrum. Meth. Phys. Res. A 876, 129–132 (2017). https://doi.org/10.1016/j.nima.2017.02.036

    Article  ADS  Google Scholar 

  3. Tabata, M., et al.: Fabrication of silica aerogel with \(n\) = 1.08 for \(e^+/\mu ^+\) separation in a threshold Cherenkov counter of the J-PARC TREK/E36 experiment. Nucl. Instrum. Meth. Phys. Res. A 795, 206–212 (2015)

    Article  ADS  Google Scholar 

  4. Yokogawa, H., Yokoyama, M.: Hydrophobic silica aerogels. J. Non-Cryst. Solids 186, 23–29 (1995)

    Article  ADS  Google Scholar 

  5. Tabata, M., et al.: Development of transparent silica aerogel over a wide range of densities. Nucl. Instrum. Meth. Phys. Res. A 623(1), 339–341 (2010)

    Article  ADS  Google Scholar 

  6. Tabata, M., et al.: Hydrophobic silica aerogel production at KEK. Nucl. Instrum. Meth. Phys. Res. A 668, 64–70 (2012)

    Article  ADS  Google Scholar 

  7. Burchell, M.J., et al.: Cosmic dust collection in aerogel. Annu. Rev. Earth Planet. Sci. 34, 385–418 (2006)

    Article  ADS  Google Scholar 

  8. Tsou, P.: Silica aerogel captures cosmic dust intact. J. Non-Cryst. Solids 186, 415–427 (1995)

    Article  ADS  Google Scholar 

  9. Kitazawa, Y., et al.: Hypervelocity impact experiments on aerogel dust collector. J. Geophys. Res. 104(E9), 22035–22052 (1999)

    Article  ADS  Google Scholar 

  10. Niimi, R., et al.: Size and density estimation from impact track morphology in silica aerogel: application to dust from comet 81P/Wild 2. Astrophys. J. 744(1), 18 (2012). (5 pages)

    Article  ADS  Google Scholar 

  11. Brownlee, D.E., et al.: Eureka!! Aerogel capture of meteoroids in space. In: 25th Lunar and Planetary Science Conference, Abstract #1092 (1994)

    Google Scholar 

  12. Noguchi, T., et al.: A chondrule-like object captured by space-exposed aerogel on the international space station. Earth Planet. Sci. Lett. 309(3–4), 198–206 (2011)

    Article  ADS  Google Scholar 

  13. Liou, J.-C., et al.: Improving the near-Earth meteoroid and orbital debris environment definition with LAD-C. In: Proceedings of 57th International Astronautical Congress, IAC-06-B6.3.10, 7p., Valencia, Spain (2006)

    Google Scholar 

  14. Brownlee, D., et al.: Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006)

    Article  ADS  Google Scholar 

  15. Tsou, P., et al.: LIFE: life investigation for Enceladus A sample return mission concept in search for evidence of life. Astrobiology 12(8), 730–742 (2012)

    Article  ADS  Google Scholar 

  16. Fujishima, K., et al.: A fly-through mission strategy targeting peptide as a signature of chemical evolution and possible life in Enceladus plumes. Enceladus and the Icy Moons of Saturn, Abstract #3085 (2016)

    Google Scholar 

  17. Yamagishi, A., et al.: TANPOPO: astrobiology exposure and micrometeoroid capture experiments. Biol. Sci. Space 21(3), 67–75 (2007). (in Japanese)

    Article  MathSciNet  Google Scholar 

  18. Kawaguchi, Y., et al.: Investigation of the interplanetary transfer of microbes in the Tanpopo mission at the exposed facility of the international space station. Astrobiology 16(5), 363–376 (2016)

    Article  ADS  Google Scholar 

  19. Tabata, M., et al.: Tanpopo cosmic dust collector: silica aerogel production and bacterial DNA contamination analysis. Biol. Sci. Space 25(1), 7–12 (2011)

    Article  Google Scholar 

  20. Tabata, M., et al.: Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment. Orig. Life Evol. Biosph. 45(1–2), 225–229 (2015)

    Article  ADS  Google Scholar 

  21. Tabata, M., et al.: Ultralow-density double-layer silica aerogel fabrication for the intact capture of cosmic dust in low-Earth orbits. J. Sol-Gel Sci. Technol. 77(2), 325–334 (2016)

    Article  Google Scholar 

  22. Tabata, M., et al.: Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the international space station. Trans. JSASS Aerosp. Technol. Jpn. 12(ists29), Pk\_29–PK\_34 (2014).

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the members of the Tanpopo team for their contributions to CP development. Additionally, the author is grateful to Prof. H. Kawai of Chiba University and Prof. I. Adachi of KEK for their assistance in aerogel production. Furthermore, the author is thankful to the JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, JAXA. This study was partially supported by the Hypervelocity Impact Facility (former name: Space Plasma Laboratory) at ISAS, JAXA, the Venture Business Laboratory at Chiba University, a Grant-in-Aid for Scientific Research (B) (No. 6H04823), and a Grant-in-Aid for JSPS Fellows (No. 07J02691) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Makoto Tabata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabata, M., on behalf of the Tanpopo Team. (2018). Spin-Off Application of Silica Aerogel in Space: Capturing Intact Cosmic Dust in Low-Earth Orbits and Beyond. In: Liu, ZA. (eds) Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017. TIPP 2017. Springer Proceedings in Physics, vol 212. Springer, Singapore. https://doi.org/10.1007/978-981-13-1313-4_2

Download citation

Publish with us

Policies and ethics