Skip to main content

Control Terminologies and Schemes for Arc Welding Processes

  • Chapter
  • First Online:
Interdisciplinary Treatment to Arc Welding Power Sources

Abstract

A control system interconnects various components of a system to provide a desired response. The control theory provides a foundation for analysing a system, which indicates cause–effect (input–output) relationship for various elements involved in a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Cuiuri, J. Norrish, Verstatile Welding Power Source Controller for Research and Product Development (2006)

    Google Scholar 

  2. I. Singh, Bhim Senior Member, B. N. Singh, I. Chandra, Ambrish Senior Member, I. Al-haddad, Kamal Senior Member, A. Pandey, I. Kothari, Dwarka P Senior Member, A review of three-phase improved Power quality AC–DC converters. IEEE Trans. Indus. Electron. 51(3), 641–660 (2004)

    Google Scholar 

  3. H.S. Cho, D.W. Chun, A microprocessor-based electrode movement controller for spot weld quality assurance, IEEE Trans. Indus. Electron. IE-32(3), 234–238 (1985)

    Article  Google Scholar 

  4. J. Dziubinski, J. Slania, As assessment of the welding properties which are characteristic of the power source used in robotic arc welding. Weld. Int. 9(8), 601–606 (1995)

    Article  Google Scholar 

  5. G. Dean, J. Norrish, C. Cook, Evaluation of control techniques for dip transfer gas metal arc welding. Australas. Weld. J. 50, 34–41 (2005)

    Google Scholar 

  6. P.K. Palani, N. Murugan, Selection of parameters of pulsed current gas metal arc welding. J. Mater. Process. Technol. 172(1), 1–10 (2006)

    Article  Google Scholar 

  7. Z. Guo-rong, L. Zhao, Z. Ai-yun, Y. Mi, D. Shan-xu, K. Yong, Sliding Mode Control and PI Control for Arc Welding/cutting Inverter (2008), pp. 4–7

    Google Scholar 

  8. X. Dl et al., The Fuzzy Control Algorithm in Copper-Coated Aluminium Wire TIG System Application (2011), pp. 2214–2218

    Google Scholar 

  9. R.H.G. Silva, J.C. Dutra, R. Gohr, Scientific and technological fundamentals for the development of the controlled short-circuiting MIG/MAG welding process: a review of the literature. Part 2 of 3. Metal droplet formation, shield gases, penetration mechanisms, heat input and economical asp. Weld. Int. 23(2), 141–149 (2009)

    Article  Google Scholar 

  10. S. Liu, Y. Wang, Research of CO2 welding inverter power source under current waveform control. IEEE International Conference on Automation and Logistics, August, pp. 116–121 (2012)

    Google Scholar 

  11. A.V. Shcherbakov, Switching processes in power sources for electron beam welding gas with formation of high-voltage breakdown. Weld. Int. 26(3), 221–226 (2012)

    Google Scholar 

  12. P. Tang, X. Jing, A Novel Fuzzy Control of Welder Power Source Using PWM Chip. 2013 Sixth International Symposium on Computing Intelligence and Design, pp. 224–227 (2013)

    Google Scholar 

  13. L. Gong, C.L. Liu, X.F. Zha, Model-based real-time dynamic power factor measurement in AC resistance spot welding with an embedded ANN. IEEE Trans. Ind. Electron. 54(3), 1442–1448 (2007)

    Article  Google Scholar 

  14. K. Zhou, L. Cai, A Nonlinear Current Control Method for Resistance Spot Welding. IEEE/ASME Trans. Mechatron. 19(2), 559–569 (2014)

    Article  MathSciNet  Google Scholar 

  15. V.A. Lebedev, M.S. Sorokin, A.A. Belov, Algorithms for controlling inverter sources of welding current to optimize the electrode metal transfer parameters. Weld. Int. 28(12), 957–961 (2014)

    Article  Google Scholar 

  16. S. Buso, T. Caldognetto, A nonlinear wide-bandwidth digital current controller for DC–DC and DC–AC converters. IEEE Trans. Ind. Electron. 62(12), 7687–7695 (2015)

    Article  Google Scholar 

  17. Y. Liu, X. Miao, C. Zhang, The Model Reference Adaptive Control Method of Submerged Arc Welding Power Supply System (2016), pp. 3646–3649

    Google Scholar 

  18. S. Narula, B. Singh, G. Bhuvaneswari, Power factor corrected welding power supply using modified zeta converter. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 617–625 (2016)

    Article  Google Scholar 

  19. J. Schupp, W. Fischer, H. Mecke, Control with power electronics (475), 18–19 (2000)

    Google Scholar 

  20. Y.M. Chae, Y. Jang, M.M. Jovanovic, A Novel Mixed Current and Voltage Control Scheme for Inverter Arc Welding Machines. APEC 2001. Sixth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), vol. 0, no. C, pp. 308–313 (2001)

    Google Scholar 

  21. D. Cuiuri, J. Norrish, C. Cook, New approaches to controlling unstable Gas Metal Arc Welding. Australas. Weld. J. vol. 47, no. 3 (2002)

    Google Scholar 

  22. P. Qingle, Design of fuzzy control and expert system based MIG arc welding invert power source. ICEMI 2009—Proceedings of the 9th International Conference on Electron. Measurements and Instruments (2009), pp. 489–492

    Google Scholar 

  23. L. Zhao, X. Bai-lu, W. Shu-hui, Z. Guo-rong, The Sliding Mode Control for Arc Welding Inverter Power Source. 2008 3rd IEEE (2008), pp. 1100–1104

    Google Scholar 

  24. Q. Pang, M. Zhang, Design of digital control system for pulsed MIG welding power source. Proc. World Congr. Intell. Control Autom. 20090461204, 2492–2495 (2010)

    Google Scholar 

  25. T. Ueyama, Welding power sources_TF. Weld. Int. 24(9), 699–705 (2010)

    Article  Google Scholar 

  26. I. The, Effect of welding parameters on bead. Flux 1 (1989)

    Google Scholar 

  27. I.S. Kim, J.S. Son, I.G. Kim, J.Y. Kim, O.S. Kim, A study on relationship between process variables and bead penetration for robotic CO2 arc welding. J. Mater. Process. Technol. 136(1–3), 139–145 (2003)

    Article  Google Scholar 

  28. L. Wei, Measurement of inherent deformations in typical weld joints using inverse analysis (part 2) prediction of welding distortion of large structures†. Trans. JWRI is (2005)

    Google Scholar 

  29. T. Uezono, T. Hongjun, Application to MIG welding using welding power source equipped with digital filtering process. Weld. Int. 22(5), 299–303 (2008)

    Article  Google Scholar 

  30. J.C. Dutra, MIG/MAG—Short circuit metal transfer—Welding power sources versus arc gases. Weld. Int. 23(4), 231–236 (2009)

    Article  Google Scholar 

  31. M. Suban, J. Tušek, Methods for the determination of arc stability (METAL TRANSFER). J. Mater. Process. Technol. 143–144(1), 430–437 (2003)

    Article  Google Scholar 

  32. B.P. Agrawal, P.K. Ghosh, Thermal modeling of multipass narrow gap pulse current GMA welding by single seam per layer deposition technique. Mater. Manuf. Process. 25(11), 1251–1268 (2010)

    Article  Google Scholar 

  33. K. Devakumaran, N. Rajasekaran, P.K. Ghosh, Process characteristics of inverter type GMAW power source under static and dynamic operating conditions. Mater. Manuf. Process. 27(12), 1450–1456 (2012)

    Article  Google Scholar 

  34. K. Skrzyniecki, P. Kolodziejczak, P. Cegielski, A. Kolasa, Experimental Studies on Stability of Power Source—Arc (2013), pp. 359–362

    Google Scholar 

  35. S. Yamane, S. Xiang, Y. Kaneko, K. Oshima, Effect of power source characteristic on CO 2 short circuiting arc welding_TF. Sci. Technol. Weld. Join. 10(3), 281–286 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arungalai Vendan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vendan, S.A., Gao, L., Garg, A., Kavitha, P., Dhivyasri, G., SG, R. (2019). Control Terminologies and Schemes for Arc Welding Processes. In: Interdisciplinary Treatment to Arc Welding Power Sources. Springer, Singapore. https://doi.org/10.1007/978-981-13-0806-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0806-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0805-5

  • Online ISBN: 978-981-13-0806-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics