Skip to main content

Computationally Modeling ncRNA-ncRNA Crosstalk

  • Chapter
  • First Online:
Non-coding RNAs in Complex Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1094))

Abstract

Our understanding of complex gene regulatory networks have been improved by the discovery of ncRNA-ncRNA crosstalk in normal and disease-specific physiological conditions. Previous studies have proposed numerous approaches for constructing ncRNA-ncRNA networks via ncRNA-mRNA regulation, functional information, or phenomics alone, or by combining heterogeneous data. Furthermore, it has been shown that ncRNA-ncRNA crosstalk can be rewired in different tissues or specific diseases. Therefore, it is necessary to integrate transcriptome data to construct context-specific ncRNA-ncRNA networks. In this chapter, we elucidated the commonly used ncRNA-ncRNA network modeling methods, and highlighted the need to integrate heterogeneous multi-mics data. Finally, we suggest future directions for studies of ncRNAs crosstalk. This comprehensive description and discussion elucidated in this chapter will provide constructive insights into ncRNA-ncRNA crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 18:132–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  3. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Xu J, Chen H, Bai J, Li S, Zhao Z, Shao T, Jiang T, Ren H, Kang C et al (2013) Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res 41:e203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grossi E, Sanchez Y, Huarte M (2016) Expanding the p53 regulatory network: LncRNAs take up the challenge. Biochim Biophys Acta 1859:200–208

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Chen J, Zhang J, Wang Z, Shao T, Jiang C, Xu J, Li X (2015) Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer. Oncotarget 6:25003–25016

    PubMed  PubMed Central  Google Scholar 

  7. Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308

    Article  CAS  PubMed  Google Scholar 

  8. Peter ME (2010) Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29:2161–2164

    Article  CAS  Google Scholar 

  9. Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel N, Gall TM et al (2014) MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146(1):268–277, e218

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Wang S, Zhou F, Shi S, Feng X et al (2014) LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 63:1700–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Antonov AV, Dietmann S, Wong P, Lutter D, Mewes HW (2009) GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists. Nucleic Acids Res 37:W323–W328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38:140–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balaga O, Friedman Y, Linial M (2012) Toward a combinatorial nature of microRNA regulation in human cells. Nucleic Acids Res 40:9404–9416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mal C, Deb A, Aftabuddin M, Kundu S (2015) A network analysis of miRNA mediated gene regulation of rice: crosstalk among biological processes. Mol BioSyst 11:2273–2280

    Article  CAS  PubMed  Google Scholar 

  15. Sun J, Zhou M, Yang H, Deng J, Wang L, Wang Q (2013) Inferring potential microRNA-microRNA associations based on targeting propensity and connectivity in the context of protein interaction network. PLoS One 8:e69719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP et al (2011) MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39:825–836

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Wang J, Lu M, Song F, Cui Q (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26:1644–1650

    Article  CAS  PubMed  Google Scholar 

  18. Hua L, Xia H, Zhou P, Li D, Li L (2014) Combination of microRNA expression profiling with genome-wide SNP genotyping to construct a coronary artery disease-related miRNA-miRNA synergistic network. Biosci Trends 8:297–307

    Article  PubMed  Google Scholar 

  19. Xiao S, Ma Y, Zhu H, Sun H, Yin Y, Feng G (2015) miRNA functional synergistic network analysis of mice with ischemic stroke. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 36:143–148

    Google Scholar 

  20. Alshalalfa M (2012) MicroRNA response elements-mediated miRNA-miRNA interactions in prostate cancer. Adv Bioinforma 2012:839837

    Google Scholar 

  21. Na YJ, Kim JH (2013) Understanding cooperativity of microRNAs via microRNA association networks. BMC Genomics 14(Suppl 5):S17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Liang C, Wong KC, Luo J, Zhang Z (2014) Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion. Bioinformatics 30:2627–2635

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Xing Y, Liang C, Hu L, Xu F, Chen Y (2015) Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis. Tumour Biol J Int Soc Oncodev Biol Med 36:5571–5579

    Article  CAS  Google Scholar 

  24. Xiao Y, Ping Y, Fan H, Xu C, Guan J, Zhao H, Li Y, Lv Y, Jin Y, Wang L et al (2013) Identifying dysfunctional miRNA-mRNA regulatory modules by inverse activation, cofunction, and high interconnection of target genes: a case study of glioblastoma. Neuro-Oncology 15:818–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song R, Catchpoole DR, Kennedy PJ, Li J (2015) Identification of lung cancer miRNA-miRNA co-regulation networks through a progressive data refining approach. J Theor Biol 380:271–279

    Article  CAS  PubMed  Google Scholar 

  26. Meng X, Wang J, Yuan C, Li X, Zhou Y, Hofestadt R, Chen M (2015) CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types. Oncogene 4:e177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Bai, J., Xiao, J. (2018). Computationally Modeling ncRNA-ncRNA Crosstalk. In: Li, X., Xu, J., Xiao, Y., Ning, S., Zhang, Y. (eds) Non-coding RNAs in Complex Diseases. Advances in Experimental Medicine and Biology, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-13-0719-5_8

Download citation

Publish with us

Policies and ethics