Skip to main content

Genome-Wide Mapping of SNPs in Non-coding RNAs

  • Chapter
  • First Online:
Non-coding RNAs in Complex Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1094))

  • 1072 Accesses

Abstract

Non-coding RNAs (ncRNAs) are essential players that participate in multiple cellular processes. Cumulative evidence has linked ncRNA-related single nucleotide polymorphisms (SNPs) to various human diseases. However, the knowledge of ncRNA-related SNPs and their potential functional mechanisms in human disease need to be further discovered. Here, we reviewed related studies on functional SNPs in two main types of ncRNA, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), with a particular focus on these ncRNA-related SNPs as novel risk factor of disease etiology. These studies will gain global insights into the relationship between ncRNAs and their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freimer NB, Sabatti C (2007) Human genetics: variants in common diseases. Nature 445(7130):828–830

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sethupathy P, Collins FS (2008) MicroRNA target site polymorphisms and human disease. Trends Genet 24(10):489–497

    Article  CAS  PubMed  Google Scholar 

  4. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  CAS  PubMed  Google Scholar 

  7. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322(5908):1717–1720

    Article  CAS  PubMed  Google Scholar 

  8. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3):215–229

    Article  CAS  PubMed  Google Scholar 

  14. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  CAS  PubMed  Google Scholar 

  15. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361

    Article  CAS  PubMed  Google Scholar 

  16. Pasmant E, Sabbagh A, Vidaud M, Bieche I (2010) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25(2):444–448

    Article  CAS  PubMed  Google Scholar 

  17. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104(9):3300–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818

    Article  CAS  PubMed  Google Scholar 

  20. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68(20):8535–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, Novotny J, Forsti A, Hemminki K, Canzian F et al (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29(3):579–584

    Article  CAS  PubMed  Google Scholar 

  22. Saetrom P, Biesinger J, Li SM, Smith D, Thomas LF, Majzoub K, Rivas GE, Alluin J, Rossi JJ, Krontiris TG et al (2009) A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res 69(18):7459–7465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song F, Zheng H, Liu B, Wei S, Dai H, Zhang L, Calin GA, Hao X, Wei Q, Zhang W et al (2009) An miR-502-binding site single-nucleotide polymorphism in the 3′-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin Cancer Res 15(19):6292–6300

    Article  CAS  PubMed  Google Scholar 

  24. Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, Weber BH, Niederacher D, Arnold N, Varon-Mateeva R et al (2009) A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis 30(1):59–64

    Article  CAS  PubMed  Google Scholar 

  25. Hariharan M, Scaria V, Brahmachari SK (2009) dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC Bioinformatics 10:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hiard S, Charlier C, Coppieters W, Georges M, Baurain D (2010) Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates. Nucleic Acids Res 38(Database issue):D640–D651

    Article  CAS  PubMed  Google Scholar 

  27. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, Cui Y (2007) PolymiRTS database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res 35(Database issue):D51–D54

    Article  CAS  PubMed  Google Scholar 

  28. Barenboim M, Zoltick BJ, Guo Y, Weinberger DR (2010) MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets. Hum Mutat 31(11):1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of human disease genes. Mol Syst Biol 4:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L et al (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70(7):2789–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wynendaele J, Bohnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S, Sbrzesny N, Kubitza D, Wolf A, Gradhand E et al (2010) An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 70(23):9641–9649

    Article  CAS  PubMed  Google Scholar 

  33. Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, Gu J, Wu X, Lu K (2010) Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 70(23):9765–9776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E (2010) Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer 127(3):589–597

    Article  CAS  PubMed  Google Scholar 

  35. Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, Tischfield JA, Rice JP (2010) SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study. Nucleic Acids Res 38(Web Server issue):W201–W209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin G, Sun J, Isaacs SD, Wiley KE, Kim ST, Chu LW, Zhang Z, Zhao H, Zheng SL, Isaacs WB et al (2011) Human polymorphisms at long non-coding RNAs (lncRNAs) and association with prostate cancer risk. Carcinogenesis 32(11):1655–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ning S, Wang P, Ye J, Li X, Li R, Zhao Z, Huo X, Wang L, Li F, Li X (2013) A global map for dissecting phenotypic variants in human lincRNAs. Eur J Hum Genet 21(10):1128–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105(2):716–721

    Article  PubMed  PubMed Central  Google Scholar 

  39. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, Tozzi F, Li JZ, Burmeister M, Absher D et al (2009) Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A 106(18):7501–7506

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336

    Article  CAS  PubMed  Google Scholar 

  41. Consortium TWTCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678

    Article  CAS  Google Scholar 

  42. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6(8):e1001074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885

    Article  CAS  PubMed  Google Scholar 

  45. Hata J, Matsuda K, Ninomiya T, Yonemoto K, Matsushita T, Ohnishi Y, Saito S, Kitazono T, Ibayashi S, Iida M et al (2007) Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction. Hum Mol Genet 16(6):630–639

    Article  CAS  PubMed  Google Scholar 

  46. Blanton SH, Burt A, Garcia E, Mulliken JB, Stal S, Hecht JT (2010) Ethnic heterogeneity of IRF6 AP-2a binding site promoter SNP association with nonsyndromic cleft lip and palate. Cleft Palate Craniofac J 47(6):574–577

    Article  PubMed  PubMed Central  Google Scholar 

  47. Badano I, Stietz SM, Schurr TG, Picconi AM, Fekete D, Quintero IM, Cabrera MD, Campos RH, Liotta JD (2012) Analysis of TNFalpha promoter SNPs and the risk of cervical cancer in urban populations of Posadas (Misiones, Argentina). J Clin Virol 53(1):54–59

    Article  CAS  PubMed  Google Scholar 

  48. Jung M, Cho BC, Lee CH, Park HS, Kang YA, Kim SK, Chang J, Kim DJ, Rha SY, Kim JH et al (2012) EGFR polymorphism as a predictor of clinical outcome in advanced lung cancer patients treated with EGFR-TKI. Yonsei Med J 53(6):1128–1135

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kohanbash G, Ishikawa E, Fujita M, Ikeura M, McKaveney K, Zhu J, Sakaki M, Sarkar SN, Okada H (2012) Differential activity of interferon-alpha8 promoter is regulated by Oct-1 and a SNP that dictates prognosis of glioma. Oncoimmunology 1(4):487–492

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, Davuluri RV, Nagy R, de la Chapelle A (2012) The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci U S A 109(22):8646–8651

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ning S, Zhao Z, Ye J, Wang P, Zhi H, Li R, Wang T, Wang J, Wang L, Li X (2014) SNP@lincTFBS: an integrated database of polymorphisms in human LincRNA transcription factor binding sites. PLoS One 9(7):e103851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28(5):495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, Diekhans M, Giardine B, Harte RA, Hinrichs AS, Hsu F et al (2008) The UCSC genome browser database: 2008 update. Nucleic Acids Res 36(Database issue):D773–D779

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangwei Ning or Yunpeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ning, S., Zhang, Y. (2018). Genome-Wide Mapping of SNPs in Non-coding RNAs. In: Li, X., Xu, J., Xiao, Y., Ning, S., Zhang, Y. (eds) Non-coding RNAs in Complex Diseases. Advances in Experimental Medicine and Biology, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-13-0719-5_5

Download citation

Publish with us

Policies and ethics