Skip to main content

Quadrature Synchronization of Two Van der Pol Oscillators Coupled by Fractional-Order Derivatives

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 714))

Abstract

The paper presents a theoretical analysis of the synchronization behavior of two coupled Van der Pol oscillators, where the coupling is defined by fractional-order derivatives. The condition for frequency synchronization is obtained for the two oscillators being in-phase quadrature. It is found that the synchronization frequency oscillates rapidly with respect to the deviations from phase quadrature and the order of fractional derivative. The linear stability analysis is carried out by analyzing the roots of Jacobian on phase error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, K., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993)

    Google Scholar 

  2. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior, Journal of Rheology 30 (1984) 133–155

    Google Scholar 

  3. Torvik, P.J., Bagley, R.L.: On the appearance of fractional derivative in the behaviour of real materials, Transaction of the ASME, Journal of Applied Mechanics 51 (1984) 294–298

    Google Scholar 

  4. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals 7 (1996) 1461–1477

    Google Scholar 

  5. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed term, Nonlinear Dynamics 38 (2004) 3–22

    Google Scholar 

  6. Galucio, A.C., Deu, J.F., Ohayon, R.: Finite element formulation of viscoelastic sandwich beams using fractional derivative operators, Computational Mechanics 33 (2004) 282–291

    Google Scholar 

  7. Jesus, I.S., Machado, J.A.T.: Implementation of fractional order electromagnetic potential through a genetic algorithm, Commun Nonlinear Sci Numer Simulat 14 (2008) 1838–1843

    Google Scholar 

  8. Rand, R.H., Sah, S.M., Suchorsky, M.K.: Fractional Mathieu equation, Commun Nonlinear Sci Numer Simulat 15 (2010) 3254–3262

    Google Scholar 

  9. Machado, J.A.T., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. Galhano, A.F.: Some applications of fractional calculus in engineering, Mathematical Problems in Engineering 2010 (2010) 1–34

    Google Scholar 

  10. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes Jr., B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system applied to a MEMS comb-drive actuator, Nonlinear Dynamics 69 (2012) 1837–1857

    Google Scholar 

  11. Suchorsky, M.K., Rand, R.H.: A pair of Van der Pol oscillators coupled by fractional derivatives, Nonlinear Dynamics 69 (2012) 313–324

    Google Scholar 

  12. Rappaport, T.S.: Wireless Communication: Principles and Practice. 2nd edn. Prentice Hall, (2002)

    Google Scholar 

  13. Elbadry, M., Harjani, R.: Quadrature Frequency Generation for Wideband Wireless Application, Springer, New York (2015)

    Google Scholar 

  14. Wasterlund, S., Ekstam, L.: Capacitor theory, IEEE Transaction on Dielectric and Electrical Insulation 1 (1994) 826–839

    Google Scholar 

  15. Ginoux, J.M., Letellier, C.: Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept, Chaos 22 (2012) 1–15

    Google Scholar 

  16. Dumitrescu, I., Bachir, S., Cordeau, D., Paillot, J. –M., Iordache, M.: Modelling and characterization of oscillator circuits by Van Der Pol model using parameter estimation, J. Circuits Systems Computers 21 (2012) 1–15

    Google Scholar 

  17. Nayfeh, A.H.: Introduction to Perturbation Techniques, Wiley, New York (1993)

    Google Scholar 

  18. Adronov, A.A, Vitt, S.E., Khaikin, S.E.: Theory of Oscillators, 2nd edn. Pergamon, Oxford (1966)

    Google Scholar 

  19. Török, J.S.: Analytical Mechanics with an Introduction to Dynamical Systems, Wiley, New York (2000)

    Google Scholar 

Download references

Acknowledgments

The author AKS is thankful to University Grants Commission (UGC, Govt. of India, Delhi) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A.K., Yadava, R.D.S. (2019). Quadrature Synchronization of Two Van der Pol Oscillators Coupled by Fractional-Order Derivatives. In: Panigrahi, C., Pujari, A., Misra, S., Pati, B., Li, KC. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 714. Springer, Singapore. https://doi.org/10.1007/978-981-13-0224-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0224-4_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0223-7

  • Online ISBN: 978-981-13-0224-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics