Skip to main content

Part of the book series: Energy and Environment Research in China ((EERC))

  • 394 Accesses

Abstract

Semiconductor photocatalysis technology is a green technology being developed rapidly in recent years by using solar energy for energy conversion and environmental purification, which has important application in both energy and environment. Photocatalysis has gradually been considered as a promising way to solve energy and environmental problems since Fujishima achieved hydrogen production from cracking water using titanium dioxide (titanium dioxide) in 1972. This field is becoming a hot topic and has attracted a lot of scientists’ attention and research. Semiconductor catalyst is driven by light to convert light energy into electrical or chemical energy without additional pollution. Furthermore, it is a technology to produce environmental friendly clean energy only with sunlight and can solve the ever increasing environmental pollution problems. In recent years, the depletion of fossil fuel and requirement of clean environment push the development of renewable energy including solar energy, which provides a good platform for the photocatalytic technology to accomplish the dream of blue sky and white cloud and sustainable developing. This chapter focuses on the development of photocatalytic technology for decades and expounds its development from the advent to the prosperous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Inoue et al., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698), 637–638 (1979)

    Article  CAS  Google Scholar 

  2. P. Wu, R. Xie, K. Imlay et al., Visible-light-induced bactericidal activity of titanium dioxide co-doped with nitrogen and silver. Environ. Sci. Technol. 44(18), 6992–6997 (2010)

    Article  CAS  PubMed Central  Google Scholar 

  3. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A Gen. 489, 1–16 (2015)

    Article  CAS  Google Scholar 

  4. D.O. Scanlon, C.W. Dunnill, J. Buckeridge et al., Band alignment of rutile and anatase TiO2. Nat. Mater. 12(9), 798–801 (2013)

    Article  CAS  PubMed Central  Google Scholar 

  5. G.X. Jin, W.Z. Hu, A mix model for calculating the wind speed frequency distribution. Acta Energiae Solaris Sinica, (1994)

    Google Scholar 

  6. N. Zhang et al., Synthesis of M@titanium dioxide (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 115(18), 9136–9145 (2011)

    Article  CAS  Google Scholar 

  7. Y. Lin, R. Lin, F. Yin et al., Photo electrochemical studies of H2, evolution in aqueous methanol solution photocatalysed by Q-ZnS particles. J. Photochem. Photobiol. A Chem. 125(1–3), 135–138 (1999)

    Article  CAS  Google Scholar 

  8. Y. Li, F. Gao, W. Wei et al., Pore size of macroporous polystyrene microspheres affects lipase immobilization. J. Mol. Catal. B Enzym. 66(1–2), 182–189 (2010)

    Article  CAS  Google Scholar 

  9. Z.H. Wang, Q.X. Zhuang, Photocatalytic reduction of pollutant Hg (II) on doped WO3, dispersion. J. Photochem. Photobiol. A Chem. 75(2), 105–111 (1993)

    Article  CAS  Google Scholar 

  10. D. Chen, A.K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56(4), 1561–1570 (2001)

    Article  CAS  Google Scholar 

  11. X. Zou, Y. Chen , X. Zhu et al., Preparation of the Keggin type chromium substituted phosphotungstates/titanium dioxide nano film and its visible photocatalytic performance. Appl. Chem. 33(3), 320–329, in Chinese (2016)

    Google Scholar 

  12. Y.U. Quanwei, M. Zhao, Z. Liu et al., Catalytic decomposition of ozone in ground air by manganese-based monolith catalysts. Chin. J. Catal. 30(1), 1–3 (2009)

    Article  Google Scholar 

  13. L. Jing, Y. Qu, B. Wang et al., Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90(12), 1773–1787 (2006)

    Article  CAS  Google Scholar 

  14. X.S. Zhao, G.Q. Lu, G.J. Millar, Encapsulation of transition metal species into zeolites and molecular sieves as redox catalysts: part I-preparation and characterisation of nanosized titanium dioxide, CdO and ZnO semiconductor particles anchored in NaY zeolite. J. Porous Mater. 3(1), 61–66 (1996)

    Article  CAS  Google Scholar 

  15. H. Huang, X. Han, X. Li, S. Wang, P. K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7(1), 482–492 (2015)

    Article  CAS  Google Scholar 

  16. L. Xie, L. Ping, Z. Zheng et al., Morphology engineering of V2O5/titanium dioxide nanocomposites with enhanced visible light-driven photofunctions for arsenic removal. Appl. Catal. B 184, 347–354 (2016)

    Article  CAS  Google Scholar 

  17. D. Jiang, T. Wang, Q. Xua, D. Li, S. Meng, M. Chen, Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl. Catal. B Environ. 201, 617–628 (2017)

    Article  CAS  Google Scholar 

  18. C. He, B. Shen, J. Chen et al., Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs.[J]. Environ. Sci. Technol. 48(14), 7891–7898 (2014)

    Article  CAS  Google Scholar 

  19. H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance C-doped Bi2O2CO3. ACS Catal. 5, 4094–4103 (2015)

    Article  CAS  Google Scholar 

  20. G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck, S.A. Chambers, W.P. Hess, Photoemission electron microscopy of titanium dioxide anatase films embedded with rutile nanocrystals. Adv. Funct. Mater. 17, 2133–2138 (2007)

    Article  CAS  Google Scholar 

  21. V. Ramamurthy, K. Venkatesan, Photochemical reactions of organic crystals. Chem. Rev. 87(2), 433–481 (1987)

    Article  CAS  Google Scholar 

  22. F.H. Quina et al., Photochemical reactions in organized monolayer assemblies. Z. Phys. Chem. 101(1–6), 151–162 (1976)

    Article  CAS  Google Scholar 

  23. N. Hoffmann, ChemInform abstract: photochemical reactions as key steps in organic synthesis. Cheminform 39(25), 1052–1103 (2008)

    Article  Google Scholar 

  24. G. Sprintschnik, H.W. Sprintschnik, P.P. Kirsch, D.G. Whitten, Cheminform abstract: photochemical reactions in organized monolayer assemblies. 6. preparation and d photochemical reactivity of surfactant ruthenium(ii) complexes in monolayer assemblies and at water-solid interfaces. Am. Chem. Soc. 99(15), 4947–4954 (1997)

    Google Scholar 

  25. S.B. Giddings, Hawking radiation, the Stefan-Boltzmann law, and unitarization. Phys. Lett. B 754, 39–42 (2015)

    Article  CAS  Google Scholar 

  26. J.W. Draper, The Twelfth Night of Shakespeare’s Audience [M] (Octagon Books, 1975)

    Google Scholar 

  27. F.H. Thaheld, Can the Stark-Einstein law resolve the measurement problem from an animate perspective? Bio Systems 135, 50 (2015)

    Article  PubMed Central  Google Scholar 

  28. T.C.E. Marcus et al., Alternative wavelength for linearity preservation of Beer-Lambert law in ozone concentration measurement. Microw. Opt. Technol. Lett. 57(4), 1013–1016 (2015)

    Article  Google Scholar 

  29. C. Noda, R.N. Zare, Relation between classical and quantum formulations of the Franck-Condon principle: the generalized r-centroid approximation. J. Mol. Spectrosc. 95(2), 254–270 (1982)

    Article  CAS  Google Scholar 

  30. W. Albert Noyes, Jr., G.S. Hammond, J.N. Pitts, Jr., Properties and Reactions of Organic Molecules in Their Triplet States (Wiley, 2007), pp. 21–156

    Google Scholar 

  31. M. Mansour, Photolysis of aromatic compounds in water in the presence of hydrogen peroxide. Bull. Environ. Contam. Toxicol. 34(1), 89–95 (1985)

    Article  CAS  PubMed Central  Google Scholar 

  32. Y. Ma et al., Titanium dioxide-based nanomaterials for photocatalytic fue generations. Chem. Rev. 114(19), 9987–10043 (2014)

    Article  CAS  PubMed Central  Google Scholar 

  33. S. Bai et al., Steering charge kinetics in photocatalysis: intersection of materials syntheses characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015)

    Article  CAS  PubMed Central  Google Scholar 

  34. K.R. Gopidas, P.V. Kamat, Photoinduced charge transfer processes in ultrasmall semiconductor clusters. Photophysical properties of CdS clusters in Nafion membrane. J. Chem. Sci. 105(6), 505–512 (1993)

    Article  CAS  Google Scholar 

  35. J.Z. Zhang, Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 104(31), 7239–7253 (2000)

    Article  CAS  Google Scholar 

  36. A. Kubacka, M. Fernández-García, G. Colón, Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112(3), 1555–1614 (2012)

    Article  CAS  Google Scholar 

  37. J.F. Montoya et al., Comprehensive kinetic and mechanistic analysis of titanium dioxide photocatalytic reactions according to the direct-indirect model: (II) experimental validation. J. Phys. Chem. C 118(26), 14276–14290 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Ren, J., Pan, W., Lu, P., Qi, Y. (2019). Foundations of Photocatalytic. In: Photo-catalytic Control Technologies of Flue Gas Pollutants. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-8750-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8750-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8748-6

  • Online ISBN: 978-981-10-8750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics