Skip to main content

Noisy Multi-objective Optimization for Multi-robot Box-Pushing Application

  • Chapter
  • First Online:
Principles in Noisy Optimization

Part of the book series: Cognitive Intelligence and Robotics ((CIR))

  • 552 Accesses

Abstract

The chapter proposes an extension of multi-objective optimization realized with differential evolution algorithm to handle the effect of noise in objective functions. The proposed extension offers four merits with respect to its traditional counterpart by the following counts. First, an adaptive selection of sample size of objective functions (based on their variance in the neighborhood) avoids unnecessary re-evaluation for quality solutions without avoiding the necessary evaluation for the relatively poor solutions. Second, introduction of a probabilistic dominance scheme (in contrast to traditional deterministic selection) to measure the qualitative dominance of one solution with respect to the other reduces the possibility of promotion of inferior solutions into the Pareto front. Third, the solutions lying in the neighborhood of the apparent Pareto front are clustered with an aim to nullify the detrimental effect of noise on the rejection of the non-dominated solutions from the Pareto-optimal front. Finally, to determine the diversity of solutions in the noisy objective space, the crowding distance metric is modified using the probability of a solution having been dominated by others. Computer simulations performed on noisy version of a well-known set of 23 benchmark functions reveal that the proposed algorithm outperforms its competitors with respect to inverted generational distance, spacing, and error ratio. Experiments undertaken on a multi-objective formulation of a multi-robot cooperative box-pushing problem indicate that the proposed algorithm outperforms other multi-objective optimization techniques used for the same application with respect to three standard metrics defined in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Buche, P. Stall, R. Dornberger, P. Koumoutsakos, Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 460–473 (2002)

    Article  Google Scholar 

  2. J. Branke, C. Schmidt, Selection in the presence of noise in Genetic and Evolutionary Computation. Lecture Notes in Computer Science, Vol. 2723, pp. 766–777 (2003)

    Chapter  Google Scholar 

  3. Y. Sano, H. Kita, Optimization of noisy fitness functions by means of genetic algorithms using history of search with test of estimation. Proc. Cong. Evol. Comput. 1, 360–365 (2002)

    Google Scholar 

  4. J.M. Fitzpatrick, J.J. Greffenstette, Genetic algorithms in noisy environments. Mach. Learn. 3, 101–120 (1994)

    Google Scholar 

  5. P. Stagge, Averaging Efficiently in the Presence of Noise, in Parallel Problem Solving from Nature V. ser. LNCS, vol. 1498, ed. by A.E. Eiben et al. (Springer, Berlin, Germany, 1998), pp. 188–197

    Google Scholar 

  6. A.N. Aizawa, B.W. Wah, Dynamic control of genetic algorithms in a noisy environment, in Proceedings of Conference Genetic Algorithms (1993), pp. 48–55

    Google Scholar 

  7. J. Branke, C. Schmidt, in Selection in the Presence of Noise, ed. by E. Cantu-Paz. Lecture Notes in Computer Science, Proceedings of Genetic Evolutionary Computing Conference, vol. 2723 (2003), pp. 766–777

    Chapter  Google Scholar 

  8. B.L. Miller, D.E. Goldberg, Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput. 4(2), 113–131 (1996)

    Article  Google Scholar 

  9. L.M. Rattray, J. Shapiro, Noisy fitness evaluation in genetic algorithms and the dynamics of learning, in Foundations of Genetic Algorithms, ed. by R.K. Belew, M.D. Vose (Morgan Kaufmann, San Mateo, CA, 1997), pp. 117–139

    Google Scholar 

  10. H.G. Beyer, Toward a theory of evolution strategies: some asymptotical results from the (1 + λ)-theory. Evol. Comput. 1(2), 165–188 (1993)

    Article  Google Scholar 

  11. B.L. Miller, Noise, Sampling, and Efficient Genetic Algorithms, Ph.D. dissertation, Dept. of Computer Science, Univ. Illinois at Urbana-Champaign, Urbana, IL, available as TR 97001 (1997)

    Google Scholar 

  12. S. Das, A. Konar, U.K. Chakraborty, Improved differential evolution algorithms for handling noisy optimization problems, in Proceedings of IEEE Congress of Evolutionary Computation, vol. 2, pp. 1691–1698 (2005)

    Google Scholar 

  13. S. Markon, D. Arnold, T. Back, T. Beislstein, H.G. Beyer, Thresholding-a selection operator for noisy ES, in Proceedings of Congress on Evolutionary Computation (2001), pp. 465–472

    Google Scholar 

  14. E.J. Hughes, Evolutionary multi-objective ranking with uncertainty and noise, in Evolutionary Multi-Criterion Optimization, EMO, vol. 1993 (2001)

    Google Scholar 

  15. A. Singh, Uncertainty based multi-objective optimization of groundwater remediation design, M.S. thesis, Univ. Illinois at Urbana-Champaign, Urbana, IL, 2003

    Google Scholar 

  16. R. Storn, K.V. Price, Differential evolution–a simple and efficient adaptive scheme for global optimization over continuous spaces (Institute of Company Secretaries of India, Chennai, Tamil Nadu. Tech. Report TR-95-012, 1995)

    Google Scholar 

  17. J. Teich, Pareto-front exploration with uncertain objectives, in Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, Vol. 1993, (2001), pp. 314–328

    Google Scholar 

  18. M. Babbar, A. Lakshmikantha, D.E. Goldberg, A Modified NSGA-II to solve Noisy Multi-objective Problems, in Proceedings of GECCO (2003)

    Google Scholar 

  19. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Wesley, 1989)

    Google Scholar 

  20. T. Back, U. Hammel, Evolution strategies applied to perturbed objective functions, in Proceedings of 1st IEEE Conference on Evolutionary Computation, vol. 1, (1994), pp. 40–45

    Google Scholar 

  21. J. Branke, C. Schmidt, H. Schmeck, Efficient fitness estimation in noisy environments, in Proceedings of Genetic Evolutionary Computation (2001), pp. 243–250

    Google Scholar 

  22. C.K. Goh, K.C. Tan, An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

    Article  Google Scholar 

  23. D. Buche, P. Stoll, R. Dornberger, P. Koumoutsakos, Multi-objective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. Part-C: Appl. Rev. 32(4), 460–473 (2002)

    Article  Google Scholar 

  24. P. Boonma, J. Suzuki, A confidence-based dominance operator in evolutionary algorithms for noisy multiobjective optimization problems, in International Conference on Tools with Artificial Intelligence (2009), pp. 387–394

    Google Scholar 

  25. L. Siwik, S. Natanek, Elitist evolutionary multi-agent system in solving noisy multi-objective optimization problems, in IEEE Congress on Evolutionary Computation, (2008), pp. 3319–3326

    Google Scholar 

  26. C.R. Kube, H. Zhang, The use of perceptual cues in multi-robot box pushing. IEEE Int. Conf. Robot. Autom. 3, 2085–2090 (1996)

    Article  Google Scholar 

  27. A. Verma, B. Jung, G.S. Sukatme, Robot box-pushing with environment-embedded sensors, in Proceedings of 2001 IEEE international Symposium on Computational Intelligence in Robotics and Automation (2001)

    Google Scholar 

  28. J. Chakraborty, A. Konar, A. Nagar, S. Das, Rotation and translation selective Pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II, in IEEE CEC (2009)

    Google Scholar 

  29. T. Robic, B. Philipic, in DEMO: Differential Evolution For Multiobjective Optimization, ed. by C.A. Coello Coello, A.H. Aguirre, E. Zitzler. Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005. Springer Lecture Notes in Computer Science, vol. 3410 (Guanajuato, Mexico, 2005), pp. 520–533

    Google Scholar 

  30. P. Legendre, D. Borcard, Statistical comparison of univariate tests of homogeneity of variances. J. Stat. Comput. Simul. (2000)

    Google Scholar 

  31. C.A. Coello Coello, M. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization. Proc. IEEE Cong. Evol. Comput. 2, 1051–1056 (2002)

    Google Scholar 

  32. S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  33. Standard Error, in Wikipedia, the free Encyclopedia

    Google Scholar 

  34. E.J. Hughes, Multi-Objective Probabilistic Selection Evolutionary Algorithm (MOPSEA). Technical Report No. DAPS/EJH/56/2000, Department of Aerospace, POwer & Sensors, Cranfield University (2000)

    Google Scholar 

  35. E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  36. K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Multi-objective Optimization Test Problems, in Proceedings of Congress of Evolutionary Computation-CEC’02, vol. 1 (Piscataway, New Jersey, 2002), pp. 825–830

    Google Scholar 

  37. Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective Optimization Test Instances for the CEC 2009 Special Session and Competition. Working Report, CES-887, School of Computer Science and Electrical Engineering, University of Essex, 2008

    Google Scholar 

  38. S. Huband, P. Hingston, L. Barone, L. While, A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  39. G.E.P. Box, M.E. Muller, A note on the generation of random deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  Google Scholar 

  40. K. Deb, A.P.S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 2, 162–197 (1998)

    Article  Google Scholar 

  41. J.E. Fieldsend, Multi-objective Particle Swarm Optimization Methods (2004)

    Google Scholar 

  42. J.D. Knowles, D. Corne, Approximating the non-dominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  43. P. Chakraborty, S. Das, G. Roy, A. Abraham, On convergence of the multi-objective particle swarm optimizers. Inf. Sci. 181(8), 1411–1425 (2011)

    Article  MathSciNet  Google Scholar 

  44. C.A. Coello Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  45. M. Babbar, A. Lakshmikantha, D.E. Goldberg, A Modified NSGA-II to solve noisy multiobjective problems, in Genetic and Evolutionary Computation Conference Late Breaking Papers, Chicago, IL, pp. 21–27 (2003)

    Google Scholar 

  46. S. Markon, V.D. Arnold, T. Baick, T. Beislstein, G.-H. Beyer, Thresholding—a selection operator for noisy ES, in Proceedings of Congress on Evolutionary Computation (CEC-2001), pp. 465–472

    Google Scholar 

  47. D. Fogel, H.-G. Beyer, A note on the empirical evaluation of intermediate recombination. Evol. Comput. 3(4), 491–495 (1995)

    Article  Google Scholar 

  48. H. Sugie, Y. Inagaki, S. Ono, H. Aisu, T. Unemi, Placing objects with multiple mobile robots-manual help with intension inference in IEEE international Conference on Robotics and Automation (1995), pp. 2181–2186

    Google Scholar 

  49. B. Flury, A First Course in Multivariate Statistics, vol. 28 (Springer, New York, 1997)

    Book  Google Scholar 

  50. U.K. Chakraborty, Advances in Differential Evolution (Springer, Heidelberg, New York, 2008)

    Book  Google Scholar 

  51. D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. (Chapman and Hall/CRC, 2007)

    Google Scholar 

  52. J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evol. Comput. 1, 3–18 (2011)

    Article  Google Scholar 

  53. S. Picek, M. Golub, D. Jakobovic, Evaluation of crossover operator performance in genetic algorithms with binary representation, in Proceedings of the 7th International Conference on Intelligent Computing: Bio-inspired Computing and Applications (Springer, Berlin, Heidelberg, 2011), pp. 223–230

    Chapter  Google Scholar 

  54. S. Garcia, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms behavior: a case study on the cec2005 special session on real parameter optimization. J. Heuristics 15, 617–644 (2009)

    Article  Google Scholar 

  55. E.F.P. González, G.R. Torres, G.T. Pulido, Motion-Planning for Co-operative Multi-Robot Box-Pushing problem, in Advances in Artificial Intelligence—IBERAMIA 2008. Lecture Notes in Computer Science, vol. 5290, (2008), pp 382–391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyusha Rakshit .

Appendix: Matlab Code of Demon

Appendix: Matlab Code of Demon

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakshit, P., Konar, A. (2018). Noisy Multi-objective Optimization for Multi-robot Box-Pushing Application. In: Principles in Noisy Optimization. Cognitive Intelligence and Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-8642-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8642-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8641-0

  • Online ISBN: 978-981-10-8642-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics