Skip to main content

Recent Advances in Evolutionary Optimization in Noisy Environment—A Comprehensive Survey

  • Chapter
  • First Online:
Principles in Noisy Optimization

Part of the book series: Cognitive Intelligence and Robotics ((CIR))

Abstract

Noisy optimization is currently receiving increasing popularity for its widespread applications in engineering optimization problems, where the objective functions are often found to be contaminated with noisy sensory measurements. In the absence of knowledge of the noise statistics, discriminating better trial solutions from the rest becomes difficult in the “selection” step of an evolutionary optimization algorithm with noisy objective/s. This chapter provides a thorough survey of the present state-of-the-art research on noisy evolutionary algorithms for both single and multi-objective optimization problems. This is undertaken by incorporating one or more of the five strategies in traditional evolutionary algorithms. The strategies include (i) fitness sampling of individual trial solution, (ii) fitness estimation of noisy samples, (iii) dynamic population sizing over the generations, (iv) adaptation of the evolutionary search strategy, and (v) modification in the selection strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Rakshit, A. Konar, S. Das, L.C. Jain, A.K. Nagar, Uncertainty management in differential evolution induced multiobjective optimization in presence of measurement noise. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 922–937 (2014)

    Article  Google Scholar 

  2. T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, 1996)

    Google Scholar 

  3. J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes (Jason Brownlee, 2011)

    Google Scholar 

  4. D. Buche, P. Stoll, R. Dornberger, P. Koumoutsakos, Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 460–473 (2002)

    Article  Google Scholar 

  5. H. Eskandari, C.D. Geiger, R. Bird, Handling uncertainty in evolutionary multiobjective optimization: SPGA, in Proceedings of IEEE Congress on Evolutionary Computation (2007), pp. 4130–4137

    Google Scholar 

  6. E.J. Hughes, Constraint handling with uncertain and noisy multi-objective evolution, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2 (2001), pp. 963–970

    Google Scholar 

  7. Y. Jin, J. Branke, Evolutionary optimization in uncertain environments—a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  8. Y. Akimoto, S.A. Morales, O. Teytaud, Analysis of runtime of optimization algorithms for noisy functions over discrete codomains. Theoret. Comput. Sci. 605, 42–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Bäck, U. Hammel, Evolution strategies applied to perturbed objective functions, in Proceedings of IEEE Congress on Evolutionary Computation (1994), pp. 40–45

    Google Scholar 

  10. H.G. Beyer, Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Comput. Methods Appl. Mech. Eng. 186(2), 239–267 (2000)

    Article  MATH  Google Scholar 

  11. H.G. Beyer, B. Sendhoff, Functions with noise-induced multimodality: a test for evolutionary robust optimization-properties and performance analysis. IEEE Trans. Evol. Comput. 10(5), 507–526 (2006)

    Article  Google Scholar 

  12. H.G. Beyer, D.V. Arnold, The steady state behavior of (μ/μ I, λ)-ES on ellipsoidal fitness models disturbed by noise, in Proceedings of Genetic and Evolutionary Computation (Springer, Berlin Heidelberg, 2003), pp. 525–536

    Chapter  Google Scholar 

  13. L.T. Bui, D. Essam, H.A. Abbass, D. Green, Performance analysis of evolutionary multi-objective optimization methods in noisy environments, in Proceedings of Asia Pacific Symposium on Intelligent and Evolutionary Systems (2004), pp. 29–39

    Google Scholar 

  14. M.L. Cauwet, J. Liu, B. Roziere, O. Teytaud, Algorithm portfolios for noisy optimization. Ann. Math. Artif. Intell. 76(1–2), 143–172 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.A. Morales, M.L. Cauwet, J. Liu, O. Teytaud, Simple and cumulative regret for continuous noisy optimization. Theoret. Comput. Sci. 617, 12–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. S.A. Morales, M.L. Cauwet, O. Teytaud, Evolution strategies with additive noise: a convergence rate lower bound, in Proceedings of ACM Conference on Foundations of Genetic Algorithms XIII (ACM, 2015), pp. 76–84

    Google Scholar 

  17. S.A. Morales, M.L. Cauwet, O. Teytaud, Analysis of different types of regret in continuous noisy optimization, in Proceedings of Genetic and Evolutionary Computation Conference (ACM, 2016), pp. 205–212

    Google Scholar 

  18. R. Narducci, B. Grossman, M. Valorani, A. Dadone, R.T. Haftka, Optimization methods for non-smooth or noisy objective functions in fluid design problems, AIAA paper 1648 (1995)

    Google Scholar 

  19. M. Rattray, J. Shapiro, Noisy fitness evaluation in genetic algorithms and the dynamics of learning, in Proceedings of Foundations of Genetic Algorithms (1997), pp. 117–139

    Google Scholar 

  20. C.W. Reynolds, Evolution of corridor following behavior in a noisy world, From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior (1994), pp. 402–410

    Google Scholar 

  21. O. Teytaud, A. Auger, On the adaptation of noise level for stochastic optimization, in Proceedings of IEEE Congress on Evolutionary Computation (2007), pp. 3027–3034

    Google Scholar 

  22. J.R. Vilela, Population statistics for particle swarm optimization on problems subject to noise. Ph. D. Thesis, Victoria University of Wellington, 2014

    Google Scholar 

  23. H.G. Beyer, B. Sendhoff, Evolution strategies for robust optimization, in Proceedings of IEEE Congress on Evolutionary Computation (2006), pp. 1346–1353

    Google Scholar 

  24. J. Branke, Creating robust solutions by means of evolutionary algorithms, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1998), pp. 119–128

    Google Scholar 

  25. L.T. Bui, H.A. Abbass, M. Barlow, A. Bender, Robustness against the decision-maker’s attitude to risk in problems with conflicting objectives. IEEE Trans. Evol. Comput. 16(1), 1–19 (2012)

    Article  Google Scholar 

  26. K. Deb, H. Gupta, Introducing robustness in multi-objective optimization. Evol. Comput. 14(4), 463–494 (2006)

    Article  Google Scholar 

  27. C.K. Goh, K.C. Tan, C.Y. Cheong, Y.S. Ong, An investigation on noise-induced features in robust evolutionary multi-objective optimization. Expert Syst. Appl. 37(8), 5960–5980 (2010)

    Article  Google Scholar 

  28. H. Jang, R. Choe, K. R. Ryu, Deriving a robust policy for container stacking using a noise-tolerant genetic algorithm, in Proceedings of ACM Research in Applied Computation Symposium (2012), pp. 31–36

    Google Scholar 

  29. K.H. Lee, G.J. Park, Robust optimization considering tolerances of design variables. Comput. Struct. 79(1), 77–86 (2001)

    Article  Google Scholar 

  30. M.H.S. Mendes, G.L. Soares, J. Coulomb, J.A. Vasconcelos, A surrogate genetic programming based model to facilitate robust multi-objective optimization: a case study in Magnetostatics. IEEE Trans. Magn. 49(5), 2065–2068 (2013)

    Article  Google Scholar 

  31. Y.S. Ong, P.B. Nair, K. Lum, Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Trans. Evol. Comput. 10(4), 392–404 (2006)

    Article  Google Scholar 

  32. I. Paenke, J. Branke, Y. Jin, Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation. IEEE Trans. Evol. Comput. 10(4), 405–420 (2006)

    Article  Google Scholar 

  33. T. Ray, Constrained robust optimal design using a multiobjective evolutionary algorithm, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2002), pp. 419–424

    Google Scholar 

  34. G.L. Soares, F.G. Guimarães, C.A. Maia, J.A. Vasconcelos, L. Jaulin, Interval robust multi-objective evolutionary algorithm, in Proceedings of IEEE Congress on Evolutionary Computation (2009), pp. 1637–1643

    Google Scholar 

  35. G.L. Soares, R.L.S. Adriano, C.A. Maia, L. Jaulin, J.A. Vasconcelos, Robust multi-objective TEAM 22 problem: a case study of uncertainties in design optimization. IEEE Trans. Magn. 45(3), 1028–1031 (2009)

    Article  Google Scholar 

  36. S. Tsutsui, A. Ghosh, Y. Fujimoto, A robust solution searching scheme in genetic search, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1996), pp. 543–552

    Chapter  Google Scholar 

  37. D. Wiesmann, U. Hammel, T. Bäck, Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Trans. Evol. Comput. 2(4), 162–167 (1998)

    Article  Google Scholar 

  38. Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  MathSciNet  Google Scholar 

  39. Y. Jin, B. Sendhoff, Fitness approximation in evolutionary computation-A survey, in Proceedings of Genetic and Evolutionary Computation Conference (2002), pp. 1105–1112

    Google Scholar 

  40. Y. Jin, M. Olhofer, B. Sendhoff, A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  41. Y. Jin, M. Olhofer, B. Sendhoff, On evolutionary optimization with approximate fitness functions, in Proceedings of Genetic and Evolutionary Computation (2000), pp. 786–793

    Google Scholar 

  42. K.H. Liang, X. Yao, C. Newton, Combining landscape approximation and local search in global optimization, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2 (1999), p. 1520

    Google Scholar 

  43. L. Shi, K. Rasheed, ASAGA: an adaptive surrogate-assisted genetic algorithm, in Proceedings of Genetic and Evolutionary Computation (ACM, 2008), pp. 1049–1056

    Google Scholar 

  44. T. Blackwell, Particle swarm optimization in dynamic environments, in Proceedings of Evolutionary Computation in Dynamic and Uncertain environments (Springer, Berlin Heidelberg, 2007), pp. 29–49

    Google Scholar 

  45. H.G. Cobb, An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments, Memorandum 6760 (Naval Research Laboratory, Washington DC, 1990)

    Google Scholar 

  46. D.E. Goldberg, R.E. Smith, Nonstationary function optimization using genetic algorithms with dominance and diploidy, in Genetic Algorithms and Their Application: Proceedings of The Second International Conference On Genetic Algorithms (1987), pp. 59–68

    Google Scholar 

  47. X. Hu, R.C. Eberhart, Adaptive particle swarm optimization: detection and response to dynamic systems, in Proceedings of IEEE Congress on Evolutionary Computation (2002), pp. 1666–1670

    Google Scholar 

  48. S. Janson, M. Middendorf, A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet. Program Evolvable Mach. 7(4), 329–354 (2006)

    Article  Google Scholar 

  49. C. Liu, New dynamic constrained optimization PSO algorithm, in Proceedings of Natural Computation, vol. 7 (2008), pp. 650–653

    Google Scholar 

  50. R.W. Morrison, Designing Evolutionary Algorithms for Dynamic Environments (Springer Science & Business Media, 2013)

    Google Scholar 

  51. K. Pal, C. Saha, S. Das, C.A. Coello Coello, Dynamic constrained optimization with offspring repair based gravitational search algorithm, in Proceedings of IEEE Congress on Evolutionary Computation (2013), pp. 2414–2421

    Google Scholar 

  52. A.N. Aizawa, B.W. Wah, Dynamic control of genetic algorithms in a noisy environment, in Proceedings of the Fifth International Conference on Genetic Algorithms, vol. 2 (1993), p. 1

    Google Scholar 

  53. A.N. Aizawa, B.W. Wah, Scheduling of genetic algorithms in a noisy environment. Evol. Comput. 2(2), 97–122 (1994)

    Article  Google Scholar 

  54. J. Branke, C. Schmidt, Sequential sampling in noisy environments, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 2004), pp. 202–211

    Google Scholar 

  55. J. Branke, S. Meisel, C. Schmidt, Simulated annealing in the presence of noise. J. Heuristics 14(6), 627–654 (2008)

    Article  MATH  Google Scholar 

  56. S.Y. Chiu, C.N. Lin, J. Liu, T.C. Su, F. Teytaud, O. Teytaud, S.J. Yen, Differential evolution for strongly noisy optimization: use 1.01n resamplings at iteration n and reach the −1/2 slope, in Proceedings of IEEE Congress on Evolutionary Computation (2015), pp. 338–345

    Google Scholar 

  57. J.E. Diaz, J. Handl, Implicit and explicit averaging strategies for simulation-based optimization of a real-world production planning problem. Informatica 39(2), 161–168 (2015)

    Google Scholar 

  58. J.E. Fieldsend, Elite accumulative sampling strategies for noisy multi-objective optimisation, in Proceedings of Evolutionary Multi-Criterion Optimization (Springer International Publishing, 2015), pp. 172–186

    Google Scholar 

  59. S.B. Gelfand, S.K. Mitter, Simulated annealing with noisy or imprecise energy measurements. J. Optim. Theory Appl. 62(1), 49–62 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Gopalakrishnan, B. Minsker, D. Goldberg, Optimal sampling in a noisy genetic algorithm for risk-based remediation design. J. Hydroinform. 5(1), 11–25 (2003)

    Article  Google Scholar 

  61. G. Iacca, F. Neri, E. Mininno, Noise analysis compact differential evolution. Int. J. Syst. Sci. 43(7), 1248–1267 (2012)

    Article  MATH  Google Scholar 

  62. J. Liu, M. Fairbank, D.P. Liébana, S.M. Lucas, Optimal resampling for the noisy OneMax problem, arXiv preprint arXiv:1607.06641 (2016)

    Google Scholar 

  63. B.L. Miller, Noise, sampling, and efficient genetic algorithms. Ph.D. Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, TR 97001, 1997

    Google Scholar 

  64. L. Painton, U. Diwekar, Stochastic annealing for synthesis under uncertainty. Eur. J. Oper. Res. 83(3), 489–502 (1995)

    Article  MATH  Google Scholar 

  65. T. Park, K.R. Ryu, Accumulative sampling for noisy evolutionary multi-objective optimization, in Proceedings of the ACM 13th Annual Conference on Genetic and Evolutionary Computation (2011), pp. 793–800

    Google Scholar 

  66. A.D. Pietro, L. While, L. Barone, Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2 (2004), pp. 1254–1261

    Google Scholar 

  67. A.D. Pietro, Optimising evolutionary strategies for problems with varying noise strength. Ph. D. Thesis, University of Western Australia, 2007

    Google Scholar 

  68. P. Rakshit, A. Konar, Differential evolution for noisy multiobjective optimization. Artif. Intell. 227, 165–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. P. Rakshit, A. Konar, Extending multi-objective differential evolution for optimization in presence of noise. Inf. Sci. 305, 56–76 (2015)

    Article  Google Scholar 

  70. F. Siegmund, Sequential sampling in noisy multi-objective evolutionary optimization. Master’s Thesis, University of Skövde, School of Humanities and Informatics, 2009

    Google Scholar 

  71. F. Siegmund, A.H.C. Ng, K. Deb, A comparative study of dynamic resampling strategies for guided evolutionary multi-objective optimization, in Proceedings of the IEEE Congress on Evolutionary Computation (2013), pp. 1826–1835

    Google Scholar 

  72. F. Siegmund, A.H.C. Ng, K. Deb, Hybrid dynamic resampling for guided evolutionary multi-objective optimization, in Proceedings of Evolutionary Multi-Criterion Optimization (Springer International Publishing, 2015), pp. 366–380

    Google Scholar 

  73. A. Syberfeldt, A. Ng, R.I. John, P. Moore, Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling. Eur. J. Oper. Res. 204(3), 533–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Z. Zhang, T. Xin, Immune algorithm with adaptive sampling in noisy environments and its application to stochastic optimization problems. IEEE Comput. Intell. Mag. 2(4), 29–40 (2007)

    Article  MathSciNet  Google Scholar 

  75. J. Branke, C. Schmidt, H. Schmec, Efficient fitness estimation in noisy environments, in Proceedings of Genetic and Evolutionary Computation (2001), pp. 243–250

    Google Scholar 

  76. L.T. Bui, H.A. Abbass, D. Essam, Fitness inheritance for noisy evolutionary multi-objective optimization, in Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation (ACM, 2005), pp. 779–785

    Google Scholar 

  77. H. Kita, Y. Sano, Genetic algorithms for optimization of uncertain functions and their applications, in Proceedings of SICE Annual Conference, vol. 3 (2003), pp. 2744–2749

    Google Scholar 

  78. Y. Sano, H. Kita, Optimization of noisy fitness functions by means of genetic algorithms using history of search with test of estimation, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2002), pp. 360–365

    Google Scholar 

  79. Y. Sano, H. Kita, Optimization of noisy fitness functions by means of genetic algorithms using history of search, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 2000), pp. 571–580

    Chapter  Google Scholar 

  80. Y. Sano, H. Kita, I. Kamihira, M. Yamaguchi, Online optimization of an engine controller by means of a genetic algorithm using history of search, in Proceedings of 26th Annual Conference of IEEE Industrial Electronics Society, vol. 4 (2000), pp. 2929–2934

    Google Scholar 

  81. S. Yang, Associative memory scheme for genetic algorithms in dynamic environments, in Proceedings of Applications of Evolutionary Computing (Springer, Berlin Heidelberg, 2006), pp. 788–799

    Google Scholar 

  82. D.V. Arnold, H.G. Beyer, Local performance of the (1 + 1)-ES in a noisy environment. IEEE Trans. Evol. Comput. 6(1), 30–41 (2002)

    Article  Google Scholar 

  83. D.V. Arnold, H.G. Beyer, Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise. Theoret. Comput. Sci. 289(1), 629–647 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  84. D.V. Arnold, H.G. Beyer, Investigation of the (μ, λ)-ES in the presence of noise, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2001), pp. 332–339

    Google Scholar 

  85. P.G. Balaji, D. Srinivasan, C.K. Tham, Uncertainties reducing techniques in evolutionary computation, in Proceedings of IEEE Congress on Evolutionary Computation (2007), pp. 556–563

    Google Scholar 

  86. H.G. Beyer, An alternative explanation for the manner in which genetic algorithms operate. Bio Systems 41(1), 1–15 (1997)

    Article  Google Scholar 

  87. H.G. Beyer, D.V. Arnold, S.M. Nieberg, A new approach for predicting the final outcome of evolution strategy optimization under noise. Genet. Program Evolvable Mach. 6(1), 7–24 (2005)

    Article  Google Scholar 

  88. P.A.N. Bosman, J. Grahl, D. Thierens, Benchmarking parameter-free AMaLGaM on functions with and without noise. Evol. Comput. 21(3), 445–469 (2013)

    Article  Google Scholar 

  89. J.M. Fitzpatrick, J.J. Grefenstette, Genetic algorithms in noisy environments. Mach. Learn. 3(2–3), 101–120 (1988)

    Google Scholar 

  90. D.E. Goldberg, K. Deb, J.H. Clark, Genetic algorithms, noise, and the sizing of populations. Complex Syst. 6, 333–362 (1992)

    MATH  Google Scholar 

  91. V. Nissen, J. Propach, On the robustness of population-based versus point-based optimization in the presence of noise. IEEE Trans. Evol. Comput. 2(3), 107–119 (1998)

    Article  Google Scholar 

  92. V. Nissen, J. Propach, Optimization with noisy function evaluations, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1998), pp. 159–168

    Google Scholar 

  93. K.C. Tan, T.H. Lee, E.F. Khor, Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Trans. Evol. Comput. 5(6), 565–588 (2001)

    Article  Google Scholar 

  94. D.V. Arnold, H.G. Beyer, Efficiency and mutation strength adaptation of the (μ/μ I, λ)-ES in a noisy environment, in Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 2000), pp. 39–48

    Chapter  Google Scholar 

  95. D.V. Arnold, H.G. Beyer, Performance analysis of evolutionary optimization with cumulative step length adaptation. IEEE Trans. Autom. Control 49(4), 617–622 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  96. B. Levitan, S. Kauffman, Adaptive walks with noisy fitness measurements. Mol. Diversity 1(1), 53–68 (1995)

    Article  Google Scholar 

  97. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (frommann-holzbog, Stuttgart, 1973)

    Google Scholar 

  98. H.G. Beyer, Mutate large, but inherit small! On the analysis of rescaled mutations in (1, λ)-ES with noisy fitness data, in Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1998), pp. 109–118

    Google Scholar 

  99. H. Ma, M. Fei, D. Simon, Z. Chen, Biogeography-based optimization in noisy environments. Trans. Inst. Meas. Control 37(2), 190–204 (2015)

    Article  Google Scholar 

  100. L.T. Bui, H.A. Abbass, D. Essam, Localization for solving noisy multi-objective optimization problems. Evol. Comput. 17(3), 379–409 (2009)

    Article  Google Scholar 

  101. J.Y. Chia, C.K. Goh, V.A. Shim, K.C. Tan, A data mining approach to evolutionary optimisation of noisy multi-objective problems. Int. J. Syst. Sci. 43(7), 1217–1247 (2012)

    Article  MATH  Google Scholar 

  102. T. Krink, B. Filipič, G.B. Fogel, Noisy optimization problems—a particular challenge for differential evolution? in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (IEEE, 2004) pp. 332–339

    Google Scholar 

  103. C.K. Goh, K.C. Tan, An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

    Article  Google Scholar 

  104. C.K. Goh, K.C. Tan, Noise handling in evolutionary multi-objective optimization, in Proceedings of IEEE Congress on Evolutionary Computation (2006), pp. 1354–1361

    Google Scholar 

  105. C.K. Goh, K.C. Tan, Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms, Studies in Computational Intelligence, vol. 186 (2009)

    Google Scholar 

  106. E. Mendel, R.A. Krohling, M. Campos, Swarm algorithms with chaotic jumps applied to noisy optimization problems. Inf. Sci. 181(20), 4494–4514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  107. H.G. Beyer, Actuator noise in recombinant evolution strategies on general quadratic fitness model, in Proceedings of Genetic and Evolutionary Computation (Springer, Berlin Heidelberg, 2004), pp. 654–665

    Chapter  Google Scholar 

  108. J.E. Fieldsend, R.M. Everson, On the Efficient Maintenance and Updating of Pareto Solutions When Assigned Objectives Values May Change, Technical Report (University of Exeter, UK, 2013)

    Google Scholar 

  109. E.J. Hughes, Evolutionary algorithm with a novel insertion operator for optimising noisy functions, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2000), pp. 790–797

    Google Scholar 

  110. J. Knowles, D. Corne, A. Reynolds, Noisy multiobjective optimization on a budget of 250 evaluations, in Proceedings of Evolutionary Multi-Criterion Optimization (Springer, Berlin Heidelberg, 2009), pp. 36–50

    Google Scholar 

  111. E.D. Mario, I. Navarro, A. Martinoli, Analysis of fitness noise in particle swarm optimization: from robotic learning to benchmark functions, in Proceedings of IEEE Congress on Evolutionary Computation (2014), pp. 2785–2792

    Google Scholar 

  112. S. Rahnamayan, H.R. Tizhoosh, M. Salama, Opposition-based differential evolution for optimization of noisy problems, in Proceedings of IEEE Congress on Evolutionary Computation (2006), pp. 1865–1872

    Google Scholar 

  113. S. Rana, L.D. Whitley, R. Cogswell, Searching in the presence of noise, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1996), pp. 198–207

    Chapter  Google Scholar 

  114. L. Siwik, S. Natanek, Elitist evolutionary multi-agent system in solving noisy multi-objective optimization problems, in Proceedings of IEEE Congress on Evolutionary Computation (2008), pp. 3319–3326

    Google Scholar 

  115. J. Branke, C. Schmidt, Selection in the presence of noise, in Proceedings of Genetic and Evolutionary Computation (Springer, Berlin Heidelberg, 2003), pp. 766–777

    Chapter  Google Scholar 

  116. S. Markon, D.V. Arnold, T. Back, T. Beielstein, H.G. Beyer, Thresholding—a selection operator for noisy ES, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2001), pp. 465–472

    Google Scholar 

  117. B.L. Miller, D.E. Goldberg, Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput. 4(2), 113–131 (1996)

    Article  Google Scholar 

  118. P.D. Stroud, Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations. IEEE Trans. Evol. Comput. 5(1), 66–77 (2001)

    Article  Google Scholar 

  119. H. Trautmann, J. Mehnen, B. Naujoks, Pareto-dominance in noisy environments, in Proceedings of IEEE Congress on Evolutionary Computation (2009), pp. 3119–3126

    Google Scholar 

  120. M. Babbar, A. Lakshmikantha, D.E. Goldberg, A modified NSGA-II to solve noisy multiobjective problems, in Proceedings of Genetic and Evolutionary Computation Conference. Late-Breaking Papers (2003), pp. 21–27

    Google Scholar 

  121. P. Boonma, J. Suzuki, A confidence-based dominance operator in evolutionary algorithms for noisy multiobjective optimization problems, in Proceedings of 21st IEEE International Conference on Tools with Artificial Intelligence (2009), pp. 387–394

    Google Scholar 

  122. D. Costa, E.A. Silver, Tabu search when noise is present: an illustration in the context of cause and effect analysis. J. Heuristics 4(1), 5–23 (1998)

    Article  MATH  Google Scholar 

  123. S. Das, A. Konar, U.K. Chakraborty, Improved differential evolution algorithms for handling noisy optimization problems, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2 (2005), pp. 1691–1698

    Google Scholar 

  124. H. Eskandari, C.D. Geiger, Evolutionary multiobjective optimization in noisy problem environments. J. Heuristics 15(6), 559–595 (2009)

    Article  MATH  Google Scholar 

  125. G. Rudolph, A partial order approach to noisy fitness functions, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2001), pp. 318–325

    Google Scholar 

  126. A. Singh, Uncertainty based multi-objective optimization of groundwater remediation design. Master’s Thesis, University of Illinois at Urbana-Champaign, 2003

    Google Scholar 

  127. J.E. Fieldsend, R.M. Everson, Multi-objective optimisation in the presence of uncertainty, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2005), pp. 243–250

    Google Scholar 

  128. E.J. Hughes, Evolutionary multi-objective ranking with uncertainty and noise, in Proceedings of Evolutionary Multi-Criterion Optimization (Springer, Berlin Heidelberg, 2001), pp. 329–343

    Google Scholar 

  129. J. Teich, Pareto-front exploration with uncertain objectives, in Proceedings of Evolutionary Multi-Criterion Optimization (Springer, Berlin Heidelberg, 2001), pp. 314–328

    Google Scholar 

  130. C. Villa, E. Lozinguez, R. Labayrade, Multi-objective optimization under uncertain objectives: application to engineering design problem, in Proceedings of Evolutionary Multi-Criterion Optimization (Springer, Berlin Heidelberg, 2013), pp. 796–810

    Google Scholar 

  131. J.E. Fieldsend, R.M. Everson, The rolling tide evolutionary algorithm: a multiobjective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput. 19(1), 103–117 (2015)

    Article  Google Scholar 

  132. N. Hansen, A.S.P. Niederberger, L. Guzzella, P. Koumoutsakos, A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans. Evol. Comput. 13(1), 180–197 (2009)

    Article  Google Scholar 

  133. J.W. Kruisselbrink, E. Reehuis, A. Deutz, T. Bäck, M. Emmerich, Using the uncertainty handling CMA-ES for finding robust optima, in Proceedings of Genetic and Evolutionary Computation (ACM, 2011), pp. 877–884

    Google Scholar 

  134. K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  135. K. Deb, J. Sundar, Reference point based multi-objective optimization using evolutionary algorithms, in Proceedings of Genetic and Evolutionary Computation (ACM, 2006), pp. 635–642

    Google Scholar 

  136. W.D. Kelton, A.M. Law, Simulation Modeling and Analysis (McGraw Hill, Boston, 2000)

    MATH  Google Scholar 

  137. A. Tsoularis, J. Wallace, Analysis of logistic growth models. Math. Biosci. 179(1), 21–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  138. F. Siegmund, A.H.C. Ng, K. Deb, Hybrid dynamic resampling algorithms for evolutionary multi-objective optimization of invariant-noise problems, in Proceedings of European Conference on the Applications of Evolutionary Computation (Springer International Publishing, 2016), pp. 311–326

    Google Scholar 

  139. F. Siegmund, A.H.C. Ng, K. Deb, Dynamic resampling for preference-based evolutionary multi-objective optimization of stochastic systems, in Proceedings of International Conference on Multiple Criteria Decision Making, COIN Report Number 2015020 (Hamburg, Germany, 2015), pp. 1–24

    Google Scholar 

  140. F. Siegmund, A.H.C. Ng, K. Deb, Standard error dynamic resampling for preference-based evolutionary multi-objective optimization, Submitted to Computational Optimization and Innovation Laboratory, COIN Report Number 2015021 (2016), pp. 1–13

    Google Scholar 

  141. P. Rakshit, A. Konar, A.K. Nagar, Artificial bee colony induced multi-objective optimization in presence of noise, in Proceedings of IEEE Congress on Evolutionary Computation (2014), pp. 3176–3183

    Google Scholar 

  142. A. Caponio, F. Neri, Differential evolution with noise analyzer, in Proceedings of Applications of Evolutionary Computing (Springer, Berlin Heidelberg, 2009), pp. 715–724

    Google Scholar 

  143. E. Mininno, F. Neri, A memetic differential evolution approach in noisy optimization. Memetic Comput. 2(2), 111–135 (2010)

    Article  Google Scholar 

  144. D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures (CRC Press, 2003)

    Google Scholar 

  145. C.H. Chen, J. Lin, E. Yücesan, S.E. Chick, Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dyn. Syst. 10(3), 251–270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  146. L.H. Lee, E.P. Chew, A simulation study on sampling and selecting under fixed computing budget, in Proceedings of the IEEE 2003 Winter Simulation Conference, vol. 1 (2003), pp. 535–542

    Google Scholar 

  147. B. Liu, X. Zhang, H. Ma, Hybrid differential evolution for noisy optimization, in Proceedings of IEEE Congress on Evolutionary Computation (2008), pp. 587–592

    Google Scholar 

  148. H. Pan, L. Wang, B. Liu, Particle swarm optimization for function optimization in noisy environment. Appl. Math. Comput. 181(2), 908–919 (2006)

    MathSciNet  MATH  Google Scholar 

  149. C.H. Chen, D. He, M. Fu, Efficient simulation budget allocation for selecting an optimal subset. INFORMS J. Comput. 20(4), 579–595 (2008)

    Article  Google Scholar 

  150. F. Siegmund, A.H.C. Ng, K. Deb, A ranking and selection strategy for preference-based evolutionary multi-objective optimization of variable-noise problems, Submitted to Computational Optimization and Innovation Laboratory, COIN Report Number COIN Report Number 2016002 (2016) pp. 1–13

    Google Scholar 

  151. P. Stagge, Averaging efficiently in the presence of noise, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1998), pp. 188–197

    Google Scholar 

  152. J.J. Merelo, F. Liberatore, A.F. Ares, R. Garcia, Z. Chelly, C. Cotta, N. Rico, A.M. Mora, P.G. Sanchez, There is noisy lunch: a study of noise in evolutionary optimization problems, in Proceedings of International Joint Conference on Computational Intelligence (2015), pp. 261–268

    Google Scholar 

  153. P. Rakshit, A. Konar, A.K. Nagar, Type-2 fuzzy induced non-dominated sorting bee colony for noisy optimization, in Proceedings of IEEE Congress on Evolutionary Computation (2015), pp. 3176–3183

    Google Scholar 

  154. J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  155. D.V. Arnold, H.G. Beyer, A general noise model and its effects on evolution strategy performance. IEEE Trans. Evol. Comput. 10(4), 380–391 (2006)

    Article  Google Scholar 

  156. U. Hammel, T. Bäck, Evolution strategies on noisy functions how to improve convergence properties, in Proceedings of Parallel Problem Solving from Nature (Springer, Berlin Heidelberg, 1994), pp. 159–168

    Chapter  Google Scholar 

  157. D.V. Arnold, H.G. Beyer, On the benefits of populations for noisy optimization. Evol. Comput. 11(2), 111–127 (2003)

    Article  Google Scholar 

  158. P.J. Darwen, Computationally intensive and noisy tasks: co-evolutionary learning and temporal difference learning on backgammon, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2 (2000), pp. 872–879

    Google Scholar 

  159. P.J. Darwen, J.B. Pollack, Co-evolutionary learning on noisy tasks, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 3 (1999), pp. 1731

    Google Scholar 

  160. J.J. Grefenstette, Genetic algorithms for changing environments, in Proceedings of Parallel Problem Solving from Nature, vol. 2 (Springer, Berlin Heidelberg, 1992), pp. 137–144

    Google Scholar 

  161. H.G. Beyer, H.P. Schwefel, Evolution strategies—a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  162. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs (Springer Science & Business Media, 2013)

    Google Scholar 

  163. R. Hooke, T.A. Jeeves, Direct search solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  MATH  Google Scholar 

  164. G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  165. J. Lozano, Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms, vol. 192 (Springer Science & Business Media, 2006)

    Google Scholar 

  166. M. Pelikan, K. Sastry, E.C. Paz (eds.), Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, vol. 33 (Springer, 2007)

    Google Scholar 

  167. D.V. Arnold, H.G. Beyer, A comparison of evolution strategies with other direct search methods in the presence of noise. Comput. Optim. Appl. 24(1), 135–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  168. H.G. Beyer, M. Olhofer, B. Sendhoff, On the impact of systematic noise on the evolutionary optimization performance—a sphere model analysis. Genet. Program Evolvable Mach. 5(4), 327–360 (2004)

    Article  Google Scholar 

  169. M. Jebalia, A. Auger, On the convergence of the (1 + 1)-ES in noisy spherical environments, in Evolution Artificielle, Tours, France, Oct 2007

    Google Scholar 

  170. M. Basseur, E. Zitzler, A preliminary study on handling uncertainty in indicator-based multiobjective optimization, in EvoWorkshops (2006), pp. 727–739

    Google Scholar 

  171. M. Basseur, E. Zitzler, Handling uncertainty in indicator-based multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 255–272 (2006)

    Article  MathSciNet  Google Scholar 

  172. D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  173. D. Simon, M. Ergezer, D. Du, R. Rarick, Markov models for biogeography-based optimization. IEEE Trans. Syst. Man Cybern. B Cybern. 41(1), 299–306 (2011)

    Article  MATH  Google Scholar 

  174. B. Goethals, Survey on Frequent Pattern Mining (University of Helsinki, 2003)

    Google Scholar 

  175. S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  176. K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, 2006)

    Google Scholar 

  177. P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain, A.K. Nagar, Realization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planning. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 814–831 (2013)

    Article  Google Scholar 

  178. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  179. J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  180. J. Kiefer, Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4(3), 502–506 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  181. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice-Hall, Englewood Cliffs, 1995)

    Google Scholar 

  182. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  183. M. Clerc, James Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  184. S.B. Akat, V. Gazi, Particle swarm optimization with dynamic neighborhood topology: three neighborhood strategies and preliminary results, in Proceedings of IEEE Swarm Intelligence Symposium (2008), pp. 1–8

    Google Scholar 

  185. J. Kennedy, Bare bones particle swarms, in Proceedings of Swarm Intelligence Symposium (2003), pp. 80–87

    Google Scholar 

  186. J.E. Fieldsend, R.M. Everson, Efficiently identifying Pareto solutions when objective values change, in Proceedings of Genetic and Evolutionary Computation (ACM, 2014), pp. 605–612

    Google Scholar 

  187. P. Limbourg, D.E.S. Aponte, An optimization algorithm for imprecise multi-objective problem functions, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1 (2005), pp. 459–466

    Google Scholar 

  188. P. Legendre, D. Borcard, Statistical comparison of univariate tests of homogeneity of variances. J. Stat. Comput. Simul. 514. Département de sciences biologiques, Université de Montréal (2000)

    Google Scholar 

  189. P. Rakshit, A. Konar, Non-dominated Sorting Bee Colony optimization in the presence of noise. Soft Comput. 20(3), 1139–1159 (2016)

    Article  Google Scholar 

  190. B.M. Adams, Advanced topics in statistical process control: the power of Shewhart’s charts. Technometrics 38(3), 286–286 (1996)

    Article  MathSciNet  Google Scholar 

  191. J.J. Merelo, Z. Chelly, A. Mora, A.F. Ares, A.I.E. Alcázar, C. Cotta, P.D.L. Cuevas, N. Rico, A statistical approach to dealing with noisy fitness in evolutionary algorithms, in Proceedings of Computational Intelligence (Springer International Publishing, 2016), pp. 79–95

    Google Scholar 

  192. D.H. Phan, J. Suzuki, A non-parametric statistical dominance operator for noisy multiobjective optimization, in Simulated Evolution and Learning (Springer, Berlin Heidelberg, 2012), pp. 42–51

    Google Scholar 

  193. V.A. Shim, K.C. Tan, J.Y. Chia, A. Al Mamun, Multi-objective optimization with estimation of distribution algorithm in a noisy environment. Evol. Comput. 21(1), 149–177 (2013)

    Article  Google Scholar 

  194. S. Finck, N. Hansen, R. Ros, A. Auger, Real-Parameter Black-Box Optimization Benchmarking 2010: Presentation of the Noisy Functions, Working Paper 2009/21, compiled 4 Dec 2014

    Google Scholar 

  195. Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective Optimization Test Instances for the CEC 2009 Special Session and Competition, Working Report, CES-887 (School of Computer Science and Electrical Engineering, University of Essex, 2008)

    Google Scholar 

  196. E. Zitzler, K. Deb, L. Thiele, Comparison of multi-objective evolutionary algorithms: empirical results. J. Evol. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

  197. K.S. Narendra, M.L.A.A. Thathachar, Learning automata—a survey. IEEE Trans. Syst. Man Cybern. 4, 323–334 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  198. J.Q. Zhang, L.W. Xu, J. Ma, M.C. Zhou, A learning automata-based particle swarm optimization algorithm for noisy environment, in IEEE Congress on Evolutionary Computation (2015), pp. 141–147

    Google Scholar 

  199. X. Li, Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

    Article  Google Scholar 

  200. G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  201. D.E. Knuth, Seminumerical algorithms, in The Art of Computer Programming, vol. 2 (1981)

    Google Scholar 

  202. J. Bolte, Linear Congruential Generators, Wolfram Demonstrations Project

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyusha Rakshit .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakshit, P., Konar, A. (2018). Recent Advances in Evolutionary Optimization in Noisy Environment—A Comprehensive Survey. In: Principles in Noisy Optimization. Cognitive Intelligence and Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-8642-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8642-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8641-0

  • Online ISBN: 978-981-10-8642-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics