Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 442 Accesses

Abstract

Precision medicine in the form of molecularly-targeted therapies are now the frontline in the treatment of cancer, buoyed by tangible improvements in treatment tolerability and outcomes (Teicher in Mol Cancer Ther, pp. 7–40, 2005 [1]). Nonetheless, drug resistance against targeted therapies almost inevitably arises eventually after several treatment cycles.

Reproduced with permission from the Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teicher, B.A.: Molecular cancer therapeutics: will the promise be fulfilled? Mol. Cancer Ther., 7–40 (2005)

    Google Scholar 

  2. Shah, M.A., Schwartz, G.K.: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res. 7, 2168–2181 (2001)

    PubMed  CAS  Google Scholar 

  3. Siddik, Z.H.: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galluzzi, L., Vitale, I., Vacchelli, E., Kroemer, G.: Cell death signaling and anticancer therapy. Front. Oncol. 1 (2011)

    Google Scholar 

  6. Dinnen, R.D., Drew, L., Petrylak, D.P., Mao, Y., Cassai, N., Szmulewicz, J., Brandt-Rauf, P., Fine, R.L.: Activation of targeted Necrosis by a p53 Peptide: a novel death pathway that circumvents apoptotic resistance. J. Biol. Chem. 282, 26675–26686 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Hu, X., Xuan, Y.: Bypassing cancer drug resistance by activating multiple death pathways—a proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett. 259, 127–137 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Rubin, I., Yarden, Y.: The basic biology of HER2. Ann. Oncol. 12, S3–S8 (2001)

    Article  PubMed  Google Scholar 

  9. Jorgensen, J.T., Hersom, M.: HER2 as a prognostic marker in gastric cancer—a systematic analysis of data from the literature. J. Cancer 3, 137–144 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Claret, F.X., Vu, T.T.: Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front. Oncol. 2 (2012)

    Google Scholar 

  11. Park, B.-W., Zhang, H.-T., Wu, C., Berezov, A., Zhang, X., Dua, R., Wang, Q., Kao, G., O’Rourke, D.M., Greene, M.I., Murali, R.: Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo. Nat. Biotech. 18, 194–198 (2000)

    Article  CAS  Google Scholar 

  12. Berezov, A., Zhang, H.-T., Greene, M.I., Murali, R.: Disabling erbB receptors with rationally designed exocyclic mimetics of antibodies: structure−function analysis†. J. Med. Chem. 44, 2565–2574 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Chin, C.F., Wong, D.Y.Q., Jothibasu, R., Ang, W.H.: Anticancer platinum (IV) prodrugs with novel modes of activity. Curr. Top. Med. Chem. 11, 2602–2612 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J.Z., Wexselblatt, E., Hambley, T.W., Gibson, D.: Pt (IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate. Chem. Commun. 48, 847–849 (2012)

    Article  CAS  Google Scholar 

  15. Wong, D.Y.Q., Lau, J.Y., Ang, W.H.: Harnessing chemoselective imine ligation for tethering bioactive molecules to platinum(iv) prodrugs. Dalton Trans. 41, 6104–6111 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Wong, D.Y.Q., Yeo, C.H.F., Ang, W.H.: Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew. Chem. Int. Ed. 53, 6752–6756 (2014)

    Article  CAS  Google Scholar 

  17. Zhang, J.Z., Bonnitcha, P., Wexselblatt, E., Klein, A.V., Najajreh, Y., Gibson, D., Hambley, T.W.: Facile preparation of mono-, di- and mixed-carboxylato platinum(IV) complexes for versatile anticancer prodrug design. Chem. Eur. J. 19, 1672–1676 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Wilken, J., Webster, K., Maihle, N.: Trastuzumab sensitizes ovarian cancer cells to EGFR-targeted therapeutics. J. Ovarian Res. 3, 7 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boulikas, T., Vougiouka, M.: Cisplatin and platinum drugs at the molecular level (review). Oncol. Rep. 10, 1663–1682 (2003)

    PubMed  CAS  Google Scholar 

  20. Martin, S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace, D.M., Green, D.R.: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995)

    Article  CAS  PubMed  Google Scholar 

  21. Denecker, G., Dooms, H., Van Loo, G., Vercammen, D., Grooten, J., Fiers, W., Declercq, W., Vandenabeele, P.: Phosphatidyl serine exposure during apoptosis precedes release of cytochrome c and decrease in mitochondrial transmembrane potential. FEBS Lett. 465, 47–52 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Ziegler, U., Groscurth, P.: Morphological features of cell death. News Physiol. Sci. 19, 124–128 (2004)

    PubMed  CAS  Google Scholar 

  23. Smardová, J., Pavlová, S., Svitáková, M., Grochová, D., Ravcuková, B.: Analysis of p53 status in human cell lines using a functional assay in yeast: Detection of new non-sense p53 mutation in codon 124. Oncol. Rep. 14, 901–907 (2005)

    Google Scholar 

  24. Lewis Phillips, G.D., Li, G., Dugger, D.L., Crocker, L.M., Parsons, K.L., Mai, E., Blättler, W.A., Lambert, J.M., Chari, R.V.J., Lutz, R.J., Wong, W.L.T., Jacobson, F.S., Koeppen, H., Schwall, R.H., Kenkare-Mitra, S.R., Spencer, S.D., Sliwkowski, M.X.: Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Hanahan, D., Weinberg, R.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Maskey, D., Yousefi, S., Schmid, I., Zlobec, I., Perren, A., Friis, R., Simon, H.-U.: ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat. Commun. 4 (2013)

    Google Scholar 

  27. Fuertes, M.A., Alonso, C., Perez, J.M.: Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev. 103, 645–662 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Burgos, A., Ellames, G.J.: Synthesis of [3H2]-(R, R)-1,2-diaminocyclohexaneoxalatoplatinum(II), [3H2]-Oxaliplatin. J. Labelled Compd. Radiopharm. 41, 443–449 (1998)

    Article  CAS  Google Scholar 

  30. Fulmer, G.R., Miller, A.J.M., Sherden, N.H., Gottlieb, H.E., Nudelman, A., Stoltz, B.M., Bercaw, J.E., Goldberg, K.I.: NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010)

    Article  CAS  Google Scholar 

  31. Gill, S.C., von Hippel, P.H.: Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989)

    Article  CAS  PubMed  Google Scholar 

  32. Park, G.Y., Wilson, J.J., Song, Y., Lippard, S.J.: Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc. Natl. Acad. Sci. 109, 11987–11992 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Yuan Qiang Wong .

Supplementary Information

Supplementary Information

Supplementary Scheme

Scheme S4.1
figure 5

Synthesis of platinum(IV)-AHNP conjugates. Reaction conditions: (I) succinimidyl 4-formylbenzoate, in DMSO, r.t. (II) acetic anhydride in DMF, r.t. (III) H2O2 in acetic acid, r.t. (IV) 4-formyl-benzoyl chloride in acetone, pyridine, reflux. AHNP: H2N-YC*DGFYAC*YMDVGGKK(aminooxy)-CONH2; dAHNP: fC*DGFYAC*yMDVGGKK(aminooxy)-CONH2 (*—Linked disulfide bridge)

Supplementary Table

Table S4.1 Tabulated data of apoptosis as evaluated by AnnexinV/PI staining of drug-treated NCI-N87 or BT-474 cells after 24 h. Each cell depicts mean % of cells at either early apoptosis, late apoptosis or necrosis
Fig. S4.1
figure 6

Measurements of cellular ROS on NCI-N87 after drug-treatment using 2′,7′–dichlorofluorescein diacetate (DCFDA) which measures general oxidative stress. In some cases, cells were co-treated with butylated hydroxyanisole (BHA), an antioxidant. t-butyl hydroperoxide-treated cells was included as a positive control

Fig. S4.2
figure 7

Intermediate-term potency of the drug conjugates as determined by MTT measurements of cellular metabolic activity after 72 h drug treatment against the NCI-N87 gastric cancer cell line. a Representative dosage-response curves. b Table of absolute IC50 (µM). Platinum concentrations were calibrated by ICP-OES

Fig. S4.3
figure 8

Visual flouresence microscopy monitoring of drug-treated NCI-N87 over time. NCI-N87 was drug-treated (15 μM for 24 h and then allowed to recover in fresh media). Nuclear morphology were visualized by Hoechst 3342 staining. There were substantial floating dead cells in drug-treated cells in the initial 24 h drug-treatment period (not shown here). When allowed to recover after 24 h drug-treatment, 4a-treated cells undergoes a transient phase of cell-profileration, as evidenced by a decrease in empty space at 144 h. The cells exhibited increasingly abnormal nuclear morphology over time, implying that continued long-term profileration was unviable

Fig. S4.4
figure 9

Cell-cycle distribution of drug-treated NCI-N87 cells over time. Drug-treated cells were permeabilized with 70% v/v ethanol and stained with propodium iodide to determine DNA content

Fig. S4.5
figure 10

Representative photos of clonogenic assay on NCI-N87 to assess the long-term proliferation ability of drug-treated cells. Single cells were seeded in a 6-well plate, drug-treated for 24 h and allowed to recover in fresh complete media for a further 15 d before counting the number of colonies formed. The number of single cells seeded per well is written on the plates

Characterisation of Compounds

See Figs. S4.6a, b, c, 4.7a, b, S4.8a, b, S4.9a, b, S4.10a, b.

Fig. S4.6
figure 11figure 11figure 11

a 1H NMR of oxaliplatin(IV)-benzaldehyde scaffold 2 in DMSO-d6. b ESI-MS (−) characterisation of 2: Fullscan, zoom scan (isotopic pattern) and MS/MS (top to bottom). m/z: Calculated 604.5 [M−H], found 604.0. c RP-HPLC purity assessment of 2 dissolved in MeCN-H2O using Shimpack VP-ODS column (150 × 5.60 mm i.d). Elution condition: 8–30% solvent B for 10 min, 30% solvent B for 8 min and finally 30–80% solvent B for 7 min

Fig. S4.7
figure 14figure 14

a ESI-MS (−) characterisation of cisplatin(IV)-AHNP conjugate 3a: Fullscan and zoom scan (isotopic pattern) m/z: calculated 1189.1 [M−2H]2−, found 1188.6. b HPLC chromatogram of cisplatin(IV)-AHNP conjugate 3a. The purity of the compound was assessed using Shimpack VP-ODS column (150 × 5.60 mm i.d). Elution Condition: 8–30% solvent B for 10 min, 30% solvent B for 8 min and finally 30–80% solvent B for 7 min

Fig. S4.8
figure 16figure 16

a ESI-MS (−) characterisation of cisplatin(IV)-dAHNP conjugate 3b: Fullscan and zoom scan (isotopic pattern) m/z: calculated 1181.1 [M−2H]2−, found 1180.9. b HPLC chromatogram of cisplatin(IV)-dAHNP conjugate 3b. The purity of the compound was assessed using Shimpack VP-ODS column (150 × 5.60 mm i.d). Elution Condition: 8–30% solvent B for 10 min, 30% solvent B for 8 min and finally 30–80% solvent B for 7 min

Fig. S4.9
figure 18figure 18

a ESI-MS (−) characterisation of oxaliplatin(IV)-AHNP conjugate 4a: Fullscan and zoom scan (isotopic pattern) m/z: calculated 1237.8 [M−2H]2−, found 1237.1. b HPLC chromatogram of oxaliplatin(IV)-AHNP conjugate 4a. The purity of the compound was assessed using Shimpack VP-ODS column (150 × 5.60 mm i.d). Elution Condition: 8–30% solvent B for 10 min, 30% solvent B for 8 min and finally 30–80% solvent B for 7 min

Fig. S4.10
figure 20figure 20

a ESI-MS (−) characterisation of oxaliplatin(IV)-dAHNP conjugate 4b: Fullscan and zoom scan (isotopic pattern) m/z: calculated 1229.8 [M−2H]2−, found 1229.6. b HPLC chromatogram of oxaliplatin(IV)-dAHNP conjugate 4b. The purity of the compound was assessed using Shimpack VP-ODS column (150 × 5.60 mm i.d). Elution Condition: 8–30% solvent B for 10 min, 30% solvent B for 8 min and finally 30–80% solvent B for 7 min

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.Y.Q. (2018). Induction of Targeted Necrosis with HER2-Targeted Platinum(IV) Anticancer Prodrugs. In: Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8594-9_4

Download citation

Publish with us

Policies and ethics