Skip to main content

Fruits of Rosaceae Family as a Source of Anticancer Compounds and Molecular Innovations

  • Chapter
  • First Online:
Anticancer Plants: Mechanisms and Molecular Interactions

Abstract

Fruits of the family, Rosaceae (Apple, cherry, Peach, strawberry, rose, raspberry) are rich source of phenolic and antioxidant compounds having anticancer properties. The present chapter discusses the detail information about anticancer compounds of strawberry, raspberry, peach, apple, cherry and rose and also the genes responsible for the biosynthesis, accumulation and transport of anticancer compounds during growth and maturation of fruits. The transcriptome expression was performed to find putative genes responsible for anticancer compounds during the biosynthesis and transporter genes. It is revealed form the promoter analysis that cis-acting element is responsible for the regulation of anticancer compounds. Thus, CRISPR/Cas9 enhanced the biosynthesis of anticancer compounds during fruit development and maturation stages. CRISPR/Cas9 will be used for the silencing of genes which putatively inhibit the formation of anti-cancer compounds and also up-regulate biosynthesis and transporter genes mediated by CRISPR/Cas9to enhance their accumulation in these fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aluko RE (2012) Bioactive peptides. In: Functional foods and nutraceuticals. Springer, New York, pp 37–61

    Chapter  Google Scholar 

  • Amatori S, Mazzoni L, Alvarez-Suarez JM, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Afrin S, Errico Provenzano A, Persico G, Mezzetti B, Amici A, Fanelli M, Battino M (2016) Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Sci Rep 6:30917. https://doi.org/10.1038/srep30917

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson CJ, Dodds PAA, Ford YY, Le MiÈRe J, Taylor JM, Blake PS, Paul N (2006) Effects of cultivar, fruit number and reflected photosynthetically active radiation on Fragaria × ananassa productivity and fruit ellagic acid and ascorbic acid concentrations. Ann Bot 97:429–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobe G, Wang B, Seeram NP, Nair MG, Bourquin LD (2006) Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC(Min) mice fed suboptimal levels of sulindac. J Agric Food Chem 54:9322–9328

    Article  CAS  PubMed  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli D, Talento C, Caboni E, Neri D (2016) Antioxidant activity and phenolic content in peach fruits from organic and integrated management. Acta Hortic 1137:201–206

    Article  Google Scholar 

  • Coates EM, Popa G, Gill CIR, McCann MJ, McDougall GJ, Stewart D, Rowland I (2007) Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J Carcinogenesis 6:4. https://doi.org/10.1186/1477-3163-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng R, Ni HM, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin XM (2007) Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem 282:13468–13476

    Article  CAS  PubMed  Google Scholar 

  • Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M (2012) The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28:9–19

    Article  CAS  PubMed  Google Scholar 

  • Jakobek L, Seruga M, Novak I, Medvidovic-Kosanovic M (2007) Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch Lebensmitt Rundsch 103:369–378

    CAS  Google Scholar 

  • Johnson JL, Bomser JA, Scheerens JC, Giusti MM (2011) Effect of black raspberry (Rubus occidentalis L.) extract variation conditioned by cultivar, production site, and fruit maturity stage on colon cancer cell proliferation. J Agric Food Chem 59:1638–1645

    Article  CAS  PubMed  Google Scholar 

  • Jugdé H, Nguy D, Moller I, Cooney JM, Atkinson RG (2008) Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J 275:3804–3814

    Article  CAS  PubMed  Google Scholar 

  • Kang SY, Seeram NP, Nair MG, Bourquin LD (2003) Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett 194:13–19

    Article  CAS  PubMed  Google Scholar 

  • Kern M, Pahlke G, Balavenkatraman KK, Bohmer FD, Marko D (2007) Apple polyphenols affect protein kinase C activity and the onset of apoptosis in human colon carcinoma cells. J Agric Food Chem 55:4999–5006

    Article  CAS  PubMed  Google Scholar 

  • Kristo AS, Klimis-Zacas D, Sikalidis AK (2016) Protective role of dietary berries in cancer. Antioxidants 5:E37. https://doi.org/10.3390/antiox5040037

    Article  PubMed  CAS  Google Scholar 

  • Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160

    Article  CAS  Google Scholar 

  • Lea MA, Ibeh C, des Bordes C, Vizzotto M, Cisneros-Zevallos L, Byrne DH, Okie WR, Moyer MP (2008) Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds. Anticancer Res 28:2067–2076

    PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50. https://doi.org/10.1186/1471-2229-10-50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin-Wang K, McGhie TK, Wang M, Liu Y, Warren B, Storey R, Espley RV, Allan AC (2014) Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front Plant Sci 5:651. https://doi.org/10.3389/fpls.2014.00651

    Article  PubMed  PubMed Central  Google Scholar 

  • Losso J, Bansode R, Trappey A, Bawadi H, Truax R (2004) In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem 15:672–678

    Article  CAS  PubMed  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh T-F, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wang R, Nan Y, Li W, Wang Q, Jin F (2016a) Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int J Oncol 48:843–853

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhu Q, Chen Y, Liu YG (2016b) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  PubMed  Google Scholar 

  • Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR (2004) Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J Agric Food Chem 52:6178–6187

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo D, Massai L, Fioritoni G, Lo Coco F, Nuti R (2016) The cure from nature: the extraordinary anticancer properties of ascorbate (vitamin C). J Integr Oncol 5:157. https://doi.org/10.4172/2329-6771.1000157

    Article  Google Scholar 

  • Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R (2014) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot 65:401–417

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak MN, Solovchenko AE, Gitelson AA (2003) Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol Technol 27:197–211

    Article  CAS  Google Scholar 

  • Miret JA, Munné-Bosch S (2016) Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chem 203:216–223

    Article  CAS  PubMed  Google Scholar 

  • Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928. https://doi.org/10.1038/ncomms6928

    Article  PubMed  CAS  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotech 22:746–754

    Article  CAS  Google Scholar 

  • Noratto G, Porter W, Byrne D, Cisneros-Zevallos L (2009) Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J Agric Food Chem 57:5219–5226

    Article  CAS  PubMed  Google Scholar 

  • Nowak R (2006) Determination of ellagic acid in pseudofruits of some species of roses. Acta Pol Pharm 63:289–292

    PubMed  CAS  Google Scholar 

  • Ogur R, Istanbulluoglu H, Korkmaz A, Barla A, Tekbas OF, Oztas E (2014) Report: investigation of anticancer effects of cherry in vitro. Pak J Pharm Sci 27:587–592

    Google Scholar 

  • Oprica L, Bucsa C, Zamfirache MM (2016) Evaluation of some phytochemical constituents and the antioxidant activity in six rose hips species collected from different altitude of suceava district. Ann Alexandru loan Cuza Univ Sect II a. Genet Mol Biol 17:1–9

    CAS  Google Scholar 

  • Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, Navarre DA (2015) Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol J 13:551–564

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Xing YF, Zhou Z, Yao Y (2015) Dihydrochalcone compounds isolated from crabapple leaves showed anticancer effects on human cancer cell lines. Molecules 20:21193–21203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13:68. https://doi.org/10.1186/1471-2229-13-68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sameeullah M, Sasaki T, Yamamoto Y (2013) Sucrose transporter NtSUT1 confers aluminum tolerance on cultured cells of tobacco (Nicotiana tabacum L). Soil Sci Plant Nutr 59:756–770

    Article  CAS  Google Scholar 

  • Sameeullah M, Khan FA, Ozer G, Aslam N, Gurel E, Waheed MT, Karadeniz T (2017) CRISPR/Cas9-mediated immunity in plants against pathogens. In: Jamal M (ed) The CRISPR/Cas system: emerging technology and application. Caister Academic Press, Poole, pp 55–64

    Google Scholar 

  • Schulenburg K, Feller A, Hoffmann T, Schecker JH, Martens S, Schwab W (2016) Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry. J Exp Bot 67:2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP (2010) Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. J Agric Food Chem 58:3965–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  • Steinmetz KA, Potter JD (1996) Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • USDA (2015) National nutrient database for standard reference, release 28. Version current: September 2015, slightly revised May 2016 (https://www.ars.usda.gov/ northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference. Accessed on 25 Nov 2017)

  • van der Reest J, Gottlieb E (2016) Anti-cancer effects of vitamin C revisited. Cell Res 26:269–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SY, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705

    Article  CAS  Google Scholar 

  • Willett WC (1994) Micronutrients and cancer risk. Am J Clin Nutr 59:S1162–S1165

    Article  Google Scholar 

  • Williner MR, Pirovani ME, Güemes DR (2003) Ellagic acid content in strawberries of different cultivars and ripening stages. J Sci Food Agric 83:842–845

    Article  CAS  Google Scholar 

  • Yang KC, Tsai CY, Wang YJ, Wei PL, Lee CH, Chen JH, Wu CH, Ho YS (2009) Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human hep G2 cells. Mol Carcinog 48:420–431

    Article  CAS  PubMed  Google Scholar 

  • Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio IIC, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L (2017) Anticancer effects of bioactive compounds from rose hip fruit in human breast cancer cell lines. PhD thesis, Swedish University of Agricultural Sciences, Sweden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sameeullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sameeullah, M., Gündoğdu, M., Canan, İ., Karadeniz, T., Aasim, M., Khawar, K.M. (2018). Fruits of Rosaceae Family as a Source of Anticancer Compounds and Molecular Innovations. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Mechanisms and Molecular Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-10-8417-1_13

Download citation

Publish with us

Policies and ethics