Skip to main content

Omics: A Holistic Approach in Cancer Treatment

  • Chapter
  • First Online:
Anticancer Plants: Mechanisms and Molecular Interactions

Abstract

Omic technologies advocate a holistic approach for the biomolecules aiming at the absolute detection in any biological sample. This high-dimensional biology when integrated with bioinformatics can target the high-throughput detection and sequencing of genes, RNA, proteins, metabolites, phytochemicals, and pharmacology or their combined use. Cancer is one of the most prevalent causes of death in many countries. According to the World Health Organization, 8.2 million people worldwide in 2012 died due to cancer, and by 2035 it is expected to increase to 24 million. Anticancer drugs used are highly expensive and develop resistance with their scrupulous side effects; thus there are unprecedented efforts to uncover new treatments. With the advent of chemotherapy, omic technologies established in recent years embrace a universal view of understanding the molecular system of biomolecules. Phytochemicals like camptothecin derivatives, vinblastine, vincristine, withanolides, withaferin A, topotecan, irinotecan, etoposide, and paclitaxel (taxol) are part of the armamentarium to treat cancer. Various approaches can be used in studying molecular markers to distinguish subtypes of disease and predict mutation that aid in cancer diagnosis and prognosis. The practice of high-end emerging omic technologies, including cDNA-AFLP, SAGE, cDNA microarray, oligonucleotide microarray, and micro-RNA, can be expanded from crop plants to medicinal plants, to expedite medicinal plant breeding and transform them into subsist industries of medicinal compounds. Therefore, the aim of this chapter is to focus on developing substitutes of these therapies to treat cancer with no pain and strain to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal SM, Raghav D, Singh H, Raghava GP (2011) CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 39:D975–D979

    Article  PubMed  CAS  Google Scholar 

  • Al-Daghri NM, Alokail MS, Alkharfy KM, Mohammed AK, Abd-Alrahman SH, Yakout SM, Amer OE, Krishnaswamy S (2012) Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells. BMC Compl Altern Med 12:202

    Article  Google Scholar 

  • Almeida LG, Sakabe NJ, de Oliveira AR, Silva MC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT (2009) CTdatabase: a knowledge base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res 37:D816–D819

    Article  PubMed  CAS  Google Scholar 

  • Alsemari A, Alkhodairy F, Aldakan A, Al-Mohanna M, Bahoush E, Shinwari Z, Alaiya A (2014) The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella foenum-graecum. BMC Complement Altern Med 14:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, Diskin SJ (2016) Imaging genomics in cancer research: limitations and promise. Br J Radiol 89:20151030. https://doi.org/10.1259/bjr.20151030

    Article  PubMed  PubMed Central  Google Scholar 

  • Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755

    Article  PubMed  CAS  Google Scholar 

  • Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A, Rennert H (2015) Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol 1:466–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Ziebarth JD, Cui Y (2013) SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res 41:D977–D982

    Article  PubMed  CAS  Google Scholar 

  • Bhuvaneshwar K, Belouali A, Singh V, Johnson RM, Song L, Alaoui A, Harris MA, Clarke R, Weiner LM, Gusev Y, Madhavan S (2016) G-DOC Plus-an integrative bioinformatics platform for precision medicine. BMC Bioinformatics 17:193. https://doi.org/10.1186/s12859-016-1010-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Black JS, Salto-Tellez M, Mills KI, Catherwood MA (2015) The impact of next generation sequencing technologies on haematological research – a review. Pathogenesis 2:9–16

    Article  Google Scholar 

  • Bulusu KC, Tym JE, Coker EA, Schierz AC, Al-Lazikani B (2014) CanSAR: updated cancer research and drug discovery knowledgebase. Nucleic Acids Res 42:D104–1047

    Article  CAS  Google Scholar 

  • Cabral A, JHM S, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G (2011) Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLoS One 6:e19328. https://doi.org/10.1371/journal.pone.0019328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cao J, Xia X, Chen X, Xiao J, Wang Q (2013) Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholine esterase inhibition activities. Food Chem Toxicol 51:242–250

    Article  PubMed  CAS  Google Scholar 

  • Careccia S, Mainardi S, Pelosi A, Gurtner A, Diverio D, Riccioni R, Testa U, Pelosi E, Piaggio G, Sacchi A, Lavorgna S, Lo-Coco F, Blandino G, Levrero M, Rizzo MG (2009) A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene 28:4034–4040

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, Steinmetz A, Qian Z (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30:1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Cheok MH, Pottier N, Kager L, Evans WE (2009) Pharmacogenetics in acute lymphoblastic leukemia. Semin Hematol 46:39–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chisanga D, Keerthikumar S, Pathan M, Ariyaratne D, Kalra H, Stephanie Boukouris S, Mathew AN, Al Saffar H, Gangoda L, Ang CS, Sieber JM OM, Mariadason R, Dasgupta N, Chilamkurti SM (2016) Colorectal cancer atlas: an integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Res 44:D969–D974

    Article  PubMed  CAS  Google Scholar 

  • Cho WCS (2010) Omics approaches in cancer research. In: An omics perspective on cancer research. Springer, Dordrecht/Heidelberg

    Chapter  Google Scholar 

  • Chung F, Chen CY, Su SC, Li CY, Wu KJ, Wang HW, Cheng WC (2016) DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res 44:D975–D979

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro A, Navarro A, Gaya A, Díaz-Beyá M, Gonzalez-Farré B, Castellano JJ, Fuster D, Martínez C, Martínez M, Monzó M (2016) PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget 7:46002–46013

    Article  PubMed  PubMed Central  Google Scholar 

  • Cretoiu D, Xu J, Xiao J, Suciu N, Cretoiu SM (2016) Circulating MicroRNAs as potential molecular biomarkers in pathophysiological evolution of pregnancy. Dis Markers 2016:3851054. https://doi.org/10.1155/2016/3851054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crews KR, Hicks JK, Pui CH, Relling MV, Evans WE (2012) Pharmacogenomics and individualized medicine: translating science into practice. Clin Pharmacol Ther 92:467–475

    PubMed  CAS  Google Scholar 

  • Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, Yu X, Xiao B, Wang W, Guo J (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Dean L (2015) Irinotecan therapy and UGT1A1 genotype. In: Pratt V, McLeod H, Dean L (eds), Medical genetics summaries. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  • Dekker LJ, Boogerd W, Stockhammer G, Dalebout JC, Siccama I, Zheng P, Bonfrer JM, Verschuuren JJ, Jenster G, Verbeek MM, Luider TM, Smitt PA (2005) MALDI-TOF mass spectrometry analysis of cerebrospinal fluid tryptic peptide profiles to diagnose leptomeningeal metastases in patients with breast cancer. Mol Cell Proteomics 4:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Devine PL, MA MG, Ward BG (1992) Circulating mucins as tumor markers in ovarian cancer. Anticancer Res 12:709–717

    PubMed  CAS  Google Scholar 

  • Efferth T, Miyachi H, Bartsch H (2007) Pharmacogenomics of a traditional Japanese herbal medicine (Kampo) for cancer therapy. Cancer Genomics Proteomics 4:81–91

    PubMed  CAS  Google Scholar 

  • Elfilali A, Lair S, Verbeke C, La Rosa P, Radvanyi F, Barillot E (2006) ITTACA: a new database for integrated tumor transcriptome array and clinical data analysis. Nucleic Acids Res 34:D613–D616

    Article  PubMed  CAS  Google Scholar 

  • Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429:464–468

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  • Finn WG (2007) Diagnostic pathology and laboratory medicine in the age of “omics”: a paper from the 2006 William Beaumont Hospital symposium on molecular pathology. J Mol Diagn 9:431–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Charlotte G, Cole S, Elisabeth W, Laura Ponting D, Stefancsik R, Bhavana Harsha B, Yin C, Mingming K, Harry J, Zbyslaw J, Sam S, Tisham T, Peter D, Campbell J (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783

    Article  PubMed  CAS  Google Scholar 

  • Fuzery AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:13. https://doi.org/10.1186/1559-0275-10-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gadewal NS, Zingde SM (2011) Database and interaction network of genes involved in oral cancer: version II. Bioinformation 6:169–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Garraway LA, Lander ES (2009) Lessons from the cancer genome. Cell 153:17–37

    Article  CAS  Google Scholar 

  • Garraway LA, Verweij J, Ballman KV (2013) Precision oncology: an overview. J Clin Oncol 31:1803–1805

    Article  PubMed  Google Scholar 

  • Gerhold DL, Jensen RV, Gullans SR (2002) Better therapeutics through microarrays. Nat Genet 32:S547–S551

    Article  CAS  Google Scholar 

  • Grozav A, Balacescu O, Balacescu L, Cheminel T, Neagoe LB, Therrien B (2015) Synthesis, anticancer activity, and genome profiling of thiazolo arene ruthenium complexes. J Med Chem 58:8475–8490

    Article  PubMed  CAS  Google Scholar 

  • Guo NL, Wan YW (2014) Network-based identification of biomarkers co-expressed with multiple pathways. Cancer Inform 13:37–47

    PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB (2014) Down regulation of tumor necrosis factor and other pro inflammatory biomarkers by polyphenols. Arch Biochem Biophys 559:91–99

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Goel R, Agarwal AV, Asif MH, Sangwan NS, Sangwan RS, Trivedi PK (2015) Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5:18611. https://doi.org/10.1038/srep18611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  • Hajzadeh MR, Tavakkol-Afshari J, Ghorbani A, Shakeri MT (2006) The effects of aqueous extract of garlic (Allium sativum L.) on laryngeal cancer cells (Hep-2) and L929 cells in vitro. J Med Plants 5:41–48

    Google Scholar 

  • Hamacher M, Herberg F, Ueffing M, Meyer HE (2008) Seven successful years of Omics research: the Human Brain Proteome Project within the National German Research Network (NGFN). Proteomics 8:1116–1117

    Article  PubMed  CAS  Google Scholar 

  • Hao DC, He CN, Shen J, Xiao PG (2017) Anticancer chemodiversity of Ranunculaceae medicinal plants: molecular mechanisms and functions. Curr Genomics 18:39–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He X, Chang S, Zhang J, Zhao Q, Xiang H, Kusonmano K, Yang L, Sun ZS, Yang H, Wang J (2008) MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res 36:D836–D841

    Article  PubMed  CAS  Google Scholar 

  • Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15:673–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Hew CS, Khoo BY, Gam LH (2013) The anti-cancer property of proteins extracted from Gynura procumbens (Lour) Merr. PLoS One 8:e68524. https://doi.org/10.1371/journal.pone.0068524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong M, Wang N, Tan HY, Tsao SW, Feng Y (2015) MicroRNAs and Chinese medicinal herbs: new possibilities in cancer therapy. Cancers 7:1643–1657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horgan RP, Kenny LC (2011) Omic technologies: genomics, transcriptomics, proteomics and metabolomics. Obstetr Gynaecol 13:189–195

    Article  Google Scholar 

  • Hosseini A, Ghorbani A (2015) Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed 5:84–97

    PubMed  PubMed Central  Google Scholar 

  • Hussain MA, Huygens F (2012) Proteomic and bioinformatics tools to understand virulence mechanisms in Staphylococcus aureus. Curr Proteomics 9:2–8

    Article  CAS  Google Scholar 

  • Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT, Funel N, Park JK, Kim MA, Kang GH, Kim SW, Chiaro MD, Peters GJ, Giaccone G (2010) Identification of microRNA-21 as a biomarker for chemo resistance and clinical outcome following adjuvant therapy in respectable pancreatic cancer. PLoS one 5:e10630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung HS, Lefferts JA, Tsongalis GJ (2017) Utilization of the oncoscan microarray assay in cancer diagnostics. Appl Cancer Res 37:1. https://doi.org/10.1186/s41241-016-0007-3

    Article  Google Scholar 

  • Kadioglu O, Efferth T (2015) Pharmacogenomic characterization of cytotoxic compounds from Salvia officinalis in cancer cells. J Nat Prod 78:762–775

    Article  PubMed  CAS  Google Scholar 

  • Kamps R, Brandao RD, Bosch BJ, Paulussen AD, Xanthoulea S, Blok MJ, Romano A (2017) Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci 18:308

    Article  PubMed Central  CAS  Google Scholar 

  • Kasture VS, Musmade DS, Vakte MB, Sonawane SB, Patil PP (2012) Metabolomics: current technologies and future trends. Int J Res Dev Pharm Life Sci 2:206–217

    Google Scholar 

  • Kell DB (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Keusch GT (2006) What do omics mean for the science and policy of the nutritional sciences? Am J ClinNutr 83:S520–S522

    Google Scholar 

  • Khan SA, Reddy D, Gupta S (2015) Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment. World J Biol Chem 6:333–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidder BL, Hu G, Zhao K (2011) ChIP-Seq: technical considerations for obtaining high quality data. Nature Immunol 12:918–922

    Article  CAS  Google Scholar 

  • Kim IJ, Kang HC, Park JG (2004) Microarray applications in cancer research. Cancer Res Treat 36:207–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  PubMed  CAS  Google Scholar 

  • Koh JLY, Brown KR, Sayad A, Kasimer D, Ketela T, Moffat J (2012) COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines. Nucleic Acids Res 40:D957–D963

    Article  PubMed  CAS  Google Scholar 

  • Kolch WH, Mischak PA (2005) The molecular make-up of a tumor: proteomics in cancer research. Clin Sci 108:369–383

    Article  CAS  Google Scholar 

  • Koomen JM, Haura EB, Bepler G, Sutphen R, Remily-Wood ER (2008) Proteomic contributions to personalized cancer care. Mol Cell Proteomics 7:1780–1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8

    Article  PubMed  CAS  Google Scholar 

  • Kulasingam V, Diamandis EP (2008) Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 5:588–599

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Chaudhary K, Gupta S, Singh H, Kumar S, Gautam A, Kapoor P, Raghava GP (2013) Cancer DR: cancer drug resistance database. Sci Rep 3:1445. https://doi.org/10.1038/srep01445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated super paramagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell line for chemotherapy applications. J Coll Inter Sci 436:234–242

    Article  CAS  Google Scholar 

  • Lao Y, Wang X, Xu N, Zhang XH (2014) Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. J Ethnopharmacol 155:1–8

    Article  PubMed  CAS  Google Scholar 

  • Legendre C, Gooden GC, Johnson K, Martinez RA, Liang WS, Salhia B (2015) Whole genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin Epigenet 7:100. https://doi.org/10.1186/s13148-015-0135-8

    Article  CAS  Google Scholar 

  • Li Y, Tollefsbol T (2011) DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol 791:11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, Liu Z, Jiang F (2010) Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 9:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Liu Z, Xiong M, Wang Q, Wang X, Yang G, Zhao L, Qiu Z, Zhou C, Wu M (2001) Gene expression profile changes in initiation and progression of squamous cell carcinoma of esophagus. Int J Cancer 91:288–294

    Article  PubMed  CAS  Google Scholar 

  • Mac Gregor JT (2004) Biomarkers of cancer risk and therapeutic benefit: new technologies, new opportunities, and some challenges. Toxicol Pathol 1:99–105

    Article  CAS  Google Scholar 

  • Malíková J, Swaczynová J, Kolár Z, Strnad M (2008) Anticancer and antiproliferative activity of natural brasinosteroids. Phtyochemistry 69:418–426

    Article  CAS  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nature Biotechnol 21:255–261

    Article  CAS  Google Scholar 

  • Mao B, Wang G (2015) MicroRNAs involved with hepatocellular carcinoma. Oncol Rep 34:2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Maqungo M, Kaur M, Kwofie SK, Radovanovic A, Schaefer U, Schmeier S, Oppon E, Christoffels A, Bajic VB (2011) DDPC: dragon database of genes associated with prostate cancer. Nucleic Acids Res 39:D980–D985

    Article  PubMed  CAS  Google Scholar 

  • Marsh S, Hoskins JM (2010) Irinotecan pharmacogenomics. Pharmacogenomics 11:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2014) Gene expression profiling using DNA microarrays methods. Mol Biol 1062:381–391

    Google Scholar 

  • Mikeska T, Craig JM (2014) DNA methylation biomarkers: cancer and beyond. Gene 5:821–864

    Article  CAS  Google Scholar 

  • Monte AA, Heard KJ, Vasiliou V (2012) Prediction of drug response and safety in clinical practice. J Med Toxicol 8:43–51

    Article  PubMed  Google Scholar 

  • Mortazavian SM, Ghorbani A (2012) Antiproliferative effect of Viola tricolor on neuroblastoma cells in vitro. Aust J Herb Med 24:93–96

    Google Scholar 

  • Mortazavian SM, Ghorbani A, Hesari TG (2012) Effect of hydro-alcoholic extract of Viola tricolor and its fractions on proliferation of uterine cervix carcinoma cells. Iran J Obst Gyncol Infertil 15:9–16

    Google Scholar 

  • Mousumi D, Prasad GBKS, Bisen PS (2010) Molecular diagnostics: promises and possibilities. Springer, Heidelberg, pp 11–31

    Google Scholar 

  • Nevedomskaya E, Wessels L, Zwart W (2014) Genome-wide epigenetic profiling of breast cancer tumors treated with aromatase inhibitors. Genome Data 2:195–198

    Article  Google Scholar 

  • Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of twelve human exomes. Nature 461:272–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholson JK (2006) Reviewers peering from under a pile of omics data. Nature 440:992

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabolomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  PubMed  CAS  Google Scholar 

  • Oskouie A, Taheri S (2015) Recent developments and application of metabolomics in cancer diseases. J Paramed Sci 6:116–135

    Google Scholar 

  • Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  • Palma MD, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6:111–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmini G, Marini F, Brandi ML (2017) What is new in the miRNA world regarding Osteosarcoma and Chondrosarcoma. Molecules 22:417. https://doi.org/10.3390/molecules22030417

    Article  CAS  PubMed Central  Google Scholar 

  • Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellegrini KL, Sanda MG, Moreno CS (2015) RNA biomarkers to facilitate the identification of aggressive prostate cancer. Mol Asp Med 45:37–46

    Article  CAS  Google Scholar 

  • Peng W, Gao W, Feng J (2014) Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol 31:346. https://doi.org/10.1007/s12032-014-0346-4

    Article  PubMed  CAS  Google Scholar 

  • Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    Article  PubMed  CAS  Google Scholar 

  • Popp C, Nichita L, Voiosu T, Bastian A, Cioplea M, Micu G, Pop G, Sticlaru L, Bengus A, Voiosu A, Mateescu RB (2016) Expression profile of p53 and p21 in large bowel mucosa as biomarkers of inflammatory-related carcinogenesis in ulcerative colitis. Dis Markers 2016:3625279. https://doi.org/10.1155/2016/3625279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pratheeshkumar P, Son YO, Korangath P, Manu KA, Sivaraman Siveen K (2015) Phytochemicals in cancer prevention and therapy. BioMed Res Int 2015:324021. https://doi.org/10.1155/2015/324021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinn JF, Patel T, Wong D, Das S, Freedman JE, Laurent LC, Carter BS, Hochberg F, Van Keuren-Jensen K, Huentelman M, Spetzler R, Kalani YS, Arango J, Adelson PD, Weiner HL, Gandhi R, Goilav B, Putterman C, Saugstad JA (2015) Extracellular RNAs: development as biomarkers of human disease. J Extracell Vesicle 2015:4. https://doi.org/10.3402/jev.v4.27495

    Article  CAS  Google Scholar 

  • Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112:55–59

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R (2014) MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal 95:245–255

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Fletcher J (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive. Stem Cells 16:413–428

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Perez C, Tamborero D, Schroeder MP, Antolín AA, Deu-Pons J, Perez-Llamas C, Mestres J, Gonzalez-Perez A, Lopez-Bigas N (2015) In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals novel targeting opportunities. Cancer Cell 27:382–396

    Article  PubMed  CAS  Google Scholar 

  • Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK (2016) MicroRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 6:235–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadeghnia HR, Ghorbani HT, Mortazavian SM, Mousavi SH, Tayarani-Najaran Z, Ghorbani A (2014) Viola tricolor induces apoptosis in cancer cells and exhibits antiangiogenic activity on chicken chorioallantoic membrane. BioMed Res Int 2014:625792. https://doi.org/10.1155/2014/625792

    Article  PubMed  PubMed Central  Google Scholar 

  • Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:161–171

    Article  PubMed  CAS  Google Scholar 

  • Sallam RM (2015) Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers 2015:12. https://doi.org/10.1155/2015/321370

    Article  CAS  Google Scholar 

  • Seo EJ, Saeed M, Law BYK, Wu AG, Kadioglu O, Greten HJ, Efferth T (2016) Pharmacogenomics of scopoletin in tumor cells. Molecules 21:496. https://doi.org/10.3390/molecules21040496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Serkova NJ, Glunde K (2009) Metabolomics of cancer. Methods Mol Biol 520:273–295

    Article  CAS  PubMed  Google Scholar 

  • Serrati S, Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, Pinto R (2016) Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets Ther 9:7355–7365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma H, Parihar L, Parihar P (2011) Review on cancer and anticancerous properties of some medicinal plants. J Med Plants Res 5:1818–1835

    Google Scholar 

  • Shu L, Cheung KL, Khor TO, Chen C, Kong AN (2010) Phytochemicals: cancer chemo-prevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 29:483–502

    Article  PubMed  CAS  Google Scholar 

  • Shyr D, Liu Q (2013) Next generation sequencing in cancer research and clinical application. Biol Proced Online 15:4. https://doi.org/10.1186/1480-9222-15-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva J, García V, Zaballos Á, Provencio M, Lombardía L, Almonacid L, García JM, Domínguez G, Peña C, Diaz R, Herrera M, Varela A, Bonilla F (2010) Vesicle-related micro RNAs in plasma of non-small cell lung cancer patients and correlation with survival. Eur Respir J 37:617–623

    Article  PubMed  CAS  Google Scholar 

  • Simón-Manso Y, Lowenthal MS, Kilpatrick LE, Sampson ML, Telu KH, Rudnick PA, Mallard WG, Bearden DW, Schock TB, Tchekhovskoi DV, Blonder N, Yan X, Liang Y, Zheng Y, Wallace WE, Neta P, Phinney KW, Remaley AT, Stein SE (2013) Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web- based resources. Analytical Chem 85:11725–11731

    Article  CAS  Google Scholar 

  • Singleton AB (2011) Exome sequencing: a transformative technology. Lancet Neurol 10:942–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivaraj R, Rahman PKSM, Rajiv P, Vanathi P, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta Mol Biomol Spectrosc 129:255–258

    Article  CAS  Google Scholar 

  • Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC, Shim SG, Paik YH (2015) Serum exosomal micro RNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 47:e184. https://doi.org/10.1038/emm.2015.68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E (1987) Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. New Engl J Med 317:909–916

    Article  PubMed  CAS  Google Scholar 

  • Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakeley K, Griffin D, Blanco RW, Cantor AB, Xiao YJ, Krischer JP (2004) Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 13:1185–1191

    PubMed  CAS  Google Scholar 

  • Tavakkol-Afshari J, Hajzadeh MR, Ghorbani A, Parsaie H (2006) Ethanolic extract of Allium sativum has antiproliferative effect on Hep2 and L929 cell lines. Pharmacogn Mag 2:29–31

    Google Scholar 

  • Teiten M, Gaascht F, Dicato M, Diederich M (2013) Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol 89:1239–1247

    Article  CAS  Google Scholar 

  • Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S, Krichevsky AM (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 14:689–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, Joshi AG, Karpe SD, Kaushik S, Kuravadi N, Lingu CS, Mahita J, Malarini R, Malhotra S, Malini M, Mathew OK, Mutt E, Naika M, Nitish S, Pasha SN, Raghavender US, Rajamani A, Shilpa S, Shingate PN, Singh HR, Sukhwal A, Sunitha MS, Sumathi M, Ramaswamy S, Gowda M, Sowdhamini R (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15:212. https://doi.org/10.1186/s12870-015-0562-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Geurts KA (2010) The ‘omics’ of cancer. Cancer Genet Cytogenet 203:37–42

    Article  Google Scholar 

  • Van Moerkercke A, Fabris M, Pollier J, Baart GJ, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A (2013) Catha Cyc, a metabolic pathway database built from Catharanthus roseus RNA-seq data. Plant Cell Physiol 54:673–685

    Article  PubMed  CAS  Google Scholar 

  • Van Ravenzwaay B, Cunha GC, Leibold E, Looser R, Mellert W, Prokoudine A, Walk T, Wiemer J (2007) The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett 172:21–28

    Article  PubMed  CAS  Google Scholar 

  • Verma M, Ghangal R, Sharma R, Sinha AK, Jain M (2014) Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS One 9:e103583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XD, Liotta L (2011) Clinical bioinformatics: a new emerging science. J Clin Bioinformatics 1:1. https://doi.org/10.1186/2043-9113-1-1

    Article  Google Scholar 

  • Wang X, Zhao H, Xu Q, Jin W, Liu C, Zhang H, Huang Z, Zhang X, Zhang Y, Xin D, Simpson AJG, Old LJ, Na Y, Zhao Y, Chen W (2006) HPtaa database-potential target genes for clinical diagnosis and immunotherapy of human carcinoma. Nucleic Acids Res 34:D607–D612

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee JH, Kong ANT (2012) Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 12:1281–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Yu RU, He QY (2015) Proteomic analysis of anticancer TCMs targeted at mitochondria. Evidence-Based Compl Altern Med 2015:14. https://doi.org/10.1155/2015/539260

    Article  Google Scholar 

  • Watters JW, McLeod H (2003) Cancer pharmacogenomics: current and future applications. Biochim Biophys Acta Rev Cancer 603:99–111

    Article  CAS  Google Scholar 

  • Wei J, Li G, Dang S, Zhou Y, Zeng K, Liu M (2016) Discovery and validation of hyper methylated markers for colorectal cancer. Dis Markers 2016:7. https://doi.org/10.1155/2016/2192853

    Article  CAS  Google Scholar 

  • Wieacker P, Steinhard J (2010) The prenatal diagnosis of genetic diseases. Dtsch Arztebl Int 107:857–862

    PubMed  PubMed Central  Google Scholar 

  • Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336:1704–1708

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Rice CM, Wang X (2012) Cancer bioinformatics: a new approach to systems clinical medicine. BMC Bioinformatics 13:71. https://doi.org/10.1186/1471-2105-13-71

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie W, Weng A, Melzig MF (2016) MicroRNAs as new bioactive components in medicinal plants. Planta Med 82:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Mochida K, Asano T, Nakabayashi R, Chiba M, Udomson N, Yamazaki Y, Goodenowe DB, Sankawa U, Yoshida T, Toyoda A, Totoki Y, Sakaki Y, Góngora-Castillo E, Buell CR, Sakurai T, Saito K (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54:686–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang G, Xu Z, Lu W, Li X, Sun C, Guo J, Xue P, Guan F (2015) Quantitative analysis of differential proteome expression in bladder cancer vs. normal bladder cells using SILAC method. PLoS One 10:e0134727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu F, Wu Y, Xie Q (2015) Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci 20:569–575

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Park JW, Guo M, Lin G, Crandall L, Compton T, Wang X, Li XJ, Chen FP, Xu RH (2009) Lack of ABCG2 expression and side population properties in human pluripotent stem cells. Stem Cells 27:2435–2445

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ Cardiovasc Genet 4:711. https://doi.org/10.1161/CIRCGENETICS.110.957829

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Kim P, Mitra R, Zhao J, Zhao Z (2016) TS Gene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res 44:D1023–D1031

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Chairman Charutar Vidyamandal Vallabh Vidyanagar Dr. C. L. Patel for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumati Bora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bora, M., Parihar, P. (2018). Omics: A Holistic Approach in Cancer Treatment. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Mechanisms and Molecular Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-10-8417-1_1

Download citation

Publish with us

Policies and ethics