Skip to main content

Calibration and Parameter Estimation for a Melitz Sector in a CGE Model

  • Chapter
  • First Online:
Trade Theory in Computable General Equilibrium Models

Abstract

This chapter is about giving numbers to parameters and unobservable variables in a Melitz CGE model. We start by describing how a Melitz model can be calibrated. This is the process by which unobservable variables (preference and fixed cost variables, δ’s, F’s and H’s) are evaluated so that for given parameter values (inter-variety substitution elasticities and productivity distribution parameters, σ and α) the model reproduces base-year data. We find that for a Melitz model there are multiple legitimate calibration possibilities but that the choice between these does not affect simulation results. Then, we review the method that Balistreri et al. (2011) have pioneered for estimating parameters in a Melitz model. This method combines calibration and estimation. Rather than setting initial values for unobservable variables to reproduce base-year data, Balistreri et al. impose theoretically preferred structures on the unobservable variables. These structures are incompatible with precise calibration, but pave the way for estimation. Parameters can be estimated by choosing the values that allow calibration to base-year data that is as close as possible subject to meeting the preferred structural constraints on the unobservable variables. Balistreri et al.’s approach is likely to be a starting point for many potentially fruitful calibration/estimation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Narayanan et al. (2012).

  2. 2.

    Recall from Sect. 2.1 that σ > 1 and from (2.25) that α − (σ − 1) > 0. Thus, the exponent \( \frac{{\left( {1 - \upsigma } \right)}}{(\upalpha + 1 - \upsigma )} \) is negative.

  3. 3.

    The exponent \( \frac{{\left( {\upsigma \;-\; 1} \right)}}{\upsigma\;*\;\upalpha } \) is positive.

  4. 4.

    For convenience, we assume that none of the components of \( {\overline{\text{Z}}} \) is zero. If this is not true, then we need to work with a version of (4.12) in which some of the variables are changes, rather than percentage changes.

  5. 5.

    The choice is constrained by (4.5) because only under this condition are the equations in Table 4.1 satisfied. As can be seen from Appendix 4.3, we use these equations to derive Table 4.2.

  6. 6.

    σ > 1 and α > σ − 1.

  7. 7.

    Normalization of Dist is required so that simulated total worldwide transport costs for trade in manufactured goods is compatible with data on these costs.

  8. 8.

    As an alternative to using distance, Balistreri et al. could have used more directly relevant data on transport costs derived from differences between fob and cif prices, see for example Gehlhar (1998).

  9. 9.

    See Alaouze (1976, 1977) and Alaouze et al. (1977) which produced estimates of Armington elasticities (σ) for about 50 commodities. These papers are summarized in Dixon et al. (1982, Sect. 29.1). Subsequent studies and surveys include Dimaranan and McDougall (2002), Head and Ries (2001), Hertel et al. (2007), McDaniel and Balistreri (2003), Shomos (2005), Zhang and Verikios (2003).

References

  • Alaouze, C. M. (1976). Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Intermediate Inputs. IMPACT Preliminary Working Paper, No. OP-07, mimeo (pp. 32). Available from the Centre of Policy Studies, Monash University.

    Google Scholar 

  • Alaouze, C. M. (1977). Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Goods Classified at the Input-Output Level of Aggregation. IMPACT Working Paper, No. O-13 (pp. 32). Available at http://www.monash.edu.au/policy/elecpapr/O-13.htm.

  • Alaouze, C. M., Marsden J. S., & Zeitsch J. (1977). Estimates of the Elasticity of Substitution Between Imported and Domestically Produced Commodities at the Four Digit ASIC Level. IMPACT Working Paper, No. O-11, pp. 66, available at http://www.monash.edu.au/policy/elecpapr/o-11.htm.

  • Balistreri, E., & Rutherford, T. (2013). Computing general equilibrium theories of monopolistic competition and heterogeneous firms (Chap. 23). In P. B. Dixon & D. W. Jorgenson (Eds.), Handbook of Computable General Equilibrium Modeling (pp. 1513–1570). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Balistreri, E. J., Hillberry, R. H., & Rutherford, T. F. (2011). Structural estimation and solution of international trade models with heterogeneous firms. Journal of International Economics, 83, 95–108.

    Article  Google Scholar 

  • Bernard, A. B., Eaton, J., Jensen, J. N., & Kortum, S. (2003). Plants and productivity in international trade. American Economic Review, 93(4), 1268–1290.

    Article  Google Scholar 

  • Blonigen, B., & Wilson, W. (1999). Explaining Armington: What determines substitutability between home and foreign goods. The Canadian Journal of Economics/Revue canadienne d’Economique, 32(1), 1–21.

    Article  Google Scholar 

  • Costinot, A., & Rodriguez-Clare, A. (2013). Trade theory with numbers: Quantifying the consequences of globalization. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of International Economics (Vol. 4, pp. 197–261). Amsterdam: Elsevier.

    Google Scholar 

  • Dimaranan, B. V., McDougall, R. A. (2002). Global trade, assistance, and production: The GTAP 5 Data Base. Center for Global Trade Analysis, Purdue University, March. Available at https://www.gtap.agecon.purdue.edu/databases/archives/v5/v5_doco.asp.

  • Dixon, P. B., Parmenter, B. R., Sutton, J., & Vincent, D. P. (1982). ORANI: A multisectoral model of the Australian economy (pp. xviii–372). Amsterdam: North-Holland.

    Google Scholar 

  • Dixon, P. B., Parmenter, B. R., Powell, A. A., & Wilcoxen, P. J. (1992). Notes and problems in applied general equilibrium economics (pp. xvi–392). Amsterdam: North-Holland.

    Google Scholar 

  • Gehlhar, M. (1998). Transport margins. (Chap. 11C). In R. A. McDougall, A. Elbehri & T. P. Truong (Eds.), Global trade assistance and protection: The GTAP 4 Data Base. Center for Global Trade Analysis, Purdue University. Available at https://www.gtap.agecon.purdue.edu/databases/v4/v4_doco.asp.

  • Head, K., & Ries, J. (2001). Increasing returns versus national product differentiation as an explanation for the pattern of U.S.–Canada trade. American Economic Review, 91(4), 858–876.

    Article  Google Scholar 

  • Hertel, T., Hummels, D., Ivanic, M., & Keeney, R. (2007). How confident can we be of CGE-based assessments of free trade agreements. Economic Modelling, 24, 611–635.

    Article  Google Scholar 

  • McDaniel, C. A., & Balistreri, E. J. (2003). A review of Armington trade substitution elasticities. Economie Internationale, 2(3), 301–313.

    Google Scholar 

  • Narayanan, B., Aguiar, A. & McDougall R. (Eds.), (2012). Global trade, assistance and production: the GTAP8 Data Base. Center for Global Trade Analysis, Purdue University, https://www.gtap.agecon.purdue.edu/databases/V8/v8_doco.asp .

  • Shomos, A. (2005), “Armington elasticities for the MONASH and USAGE models”, Research Memorandum, Cat. No. GA-514, Productivity Commission, Melbourne, September.

    Google Scholar 

  • Zhang, X. G., & Verikios, G. (2003). An alternative estimation of Armington elasticities for the GTAP model. Melbourne: Research Memorandum GT 5 Productivity Commission.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Dixon .

Appendices

Appendix 4.1: Relating Observables to Melitz Concepts, and Demonstrating the Fixity of the Shares of Production, Link and Establishment Costs in an Industry’s Total Costs

In this appendix we derive Eqs. (4.1)–(4.3). Then we show that the Melitz model with a Pareto specification of firm productivities implies a constant split of industry costs between variable, link and establishment costs.

In (4.1) we assume that the landed-duty-paid value of trade on the sd-link, V(s, d), is the value for the typical firm, \( {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} \), times the number of trading firms, Nsd. To derive (4.1) we start from

$$ {\text{V}}({\text{s}},{\text{d}}) = \sum\limits_{{{\text{k}} \in {\text{S}}({\text{s}},{\text{d}})}} {{\text{N}}_{\text{s}} {\text{g}}(\Phi_{\text{k}}^{{}} ){\text{P}}_{\text{ksd}} {\text{Q}}_{\text{ksd}} } , $$
(4.25)

that is, the landed-duty-paid value of widgets sent from s to d is the value, \( {\text{P}}_{\text{ksd}} {\text{Q}}_{\text{ksd}} \), sent by a k-class firm times the number of such firms, \( {\text{N}}_{\text{s}} {\text{g}}(\Phi_{\text{k}}^{{}} ) \), aggregated over all k in S(s, d). Using the AKME versions of (T2.1) and (T2.3) and assuming that \( \upgamma_{\text{ksd}} = 1 \) for all k, we find that

$$ \frac{{{\text{P}}_{\text{ksd}} }}{{{\text{P}}_{{ \bullet {\text{sd}}}} }} = \frac{{{{\Phi }}_{{ \bullet {\text{sd}}}} }}{{{{\Phi}}_{\text{ksd}} }}. $$
(4.26)

and

$$ \frac{{{\text{Q}}_{\text{ksd}} }}{{{\text{Q}}_{{ \bullet {\text{sd}}}} }} = \left( {\frac{{{\text{P}}_{{ \bullet {\text{sd}}}} }}{{{\text{P}}_{\text{ksd}} }}} \right)^{\upsigma } . $$
(4.27)

Combining (4.26) and (4.27) gives

$$ {\text{Q}}_{\text{ksd}} {\text{P}}_{\text{ksd}} = \left( {\frac{{\Phi_{\text{ksd}} }}{{\Phi_{{ \bullet {\text{sd}}}} }}} \right)^{\upsigma - 1} *{\text{Q}}_{{ \bullet {\text{sd}}}} {\text{P}}_{{ \bullet {\text{sd}}}} . $$
(4.28)

Substituting into (4.25) we obtain

$$ {\text{V}}({\text{s}},{\text{d}}) = \frac{{{\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{\Phi_{{ \bullet {\text{sd}}}}^{\upsigma - 1} }}\sum\limits_{{{\text{k}} \in {\text{S}}({\text{s}},{\text{d}})}} {{\text{N}}_{\text{s}} {\text{g}}(\Phi_{\text{k}}^{{}} )} {\kern 1pt}\Phi_{\text{ksd}}^{\upsigma - 1} . $$
(4.29)

Then applying (2.19) we arrive at (4.1):

$$ {\text{V}}({\text{s}},{\text{d}}) = {\text{N}}_{\text{sd}} {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} . $$
(4.30)

Starting from the Melitz version of (T2.3) we have

$$ {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} {\text{N}}_{\text{sd}} = {\text{Q}}_{\text{d}} \updelta_{\text{sd}}^{\upsigma } {\text{P}}_{{ \bullet {\text{sd}}}}^{1 - \upsigma } {\text{P}}_{\text{d}}^{\upsigma } {\text{N}}_{\text{sd}} . $$
(4.31)

Adding over s and using (4.30) gives

$$ \sum\limits_{\text{s}} {{\text{V}}({\text{s}},{\text{d}})} = {\text{Q}}_{\text{d}} {\text{P}}_{\text{d}}^{\upsigma } \sum\limits_{\text{s}} {\updelta_{\text{sd}}^{\upsigma } {\text{P}}_{{ \bullet {\text{sd}}}}^{1 - \upsigma } } {\text{N}}_{\text{sd}} . $$
(4.32)

Now using (T2.2) we obtain

$$ \sum\limits_{\text{s}} {{\text{V}}({\text{s}},{\text{d}})} = {\text{Q}}_{\text{d}} {\text{P}}_{\text{d}}^{\upsigma } {\text{P}}_{\text{d}}^{1 - \upsigma } $$
(4.33)

which leads to (4.2).

We start by multiplying the Melitz version of (T2.7) through by Ws:

$$ {\text{W}}_{\text{s}} {\text{L}}_{\text{s}} = \sum\limits_{\text{d}} {\frac{{{\text{W}}_{\text{s}} {\text{N}}_{\text{sd}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{\Phi_{{ \bullet {\text{sd}}}} }}} + \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} } {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} + {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} . $$
(4.34)

The left hand side is total costs in the widget industry of country s. The first term on the right hand side is the industry’s total variable costs. The second term is trade-link set-up costs incurred by the industry. The third term is establishment costs incurred by firms in the industry. We work separately on each of these three terms.

Substituting from (T2.1) into the variable-cost term gives

$$ \sum\limits_{\text{d}} {\frac{{{\text{W}}_{\text{s}} {\text{N}}_{\text{sd}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{\Phi _{{ \bullet {\text{sd}}}} }}} = \frac{\upsigma - 1}{\upsigma }*\sum\limits_{\text{d}} {\frac{{{\text{P}}_{{ \bullet {\text{sd}}}} {\text{N}}_{\text{sd}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{{\text{T}}_{\text{sd}} }}} . $$
(4.35)

Working with (T2.10) we find that link set-up costs are given by:

$$ \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} } = \frac{1}{\upsigma - 1}*\sum\limits_{\text{d}} {\frac{{{\text{W}}_{\text{s}} {\text{Q}}_{{{ \hbox{min} }({\text{s}},{\text{d}})}} {\text{N}}_{\text{sd}} }}{{\Phi _{{{ \hbox{min} }({\text{s}},{\text{d}})}} }}} . $$
(4.36)

Using (T2.11) and (T2.12) we have \( {{\text{Q}_{{\hbox{min} ({\text{s}},{\text{d}})}} } \mathord{\left/ {\vphantom {{\text{Q}_{{\hbox{min} ({\text{s}},{\text{d}})}} } {\Phi_{{\hbox{min} ({\text{s}},{\text{d}})}} }}} \right. \kern-0pt} {\Phi_{{\hbox{min} ({\text{s}},{\text{d}})}} }} = \upbeta^{1 - \upsigma } *\left[ {{{{\text{Q}}_{{ \bullet {\text{sd}}}} } \mathord{\left/ {\vphantom {{{\text{Q}}_{{ \bullet {\text{sd}}}} } {\Phi_{{ \bullet {\text{sd}}}} }}} \right. \kern-0pt} {\Phi_{{ \bullet {\text{sd}}}} }}} \right] \). Substituting this into (4.36) gives

$$ \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} } = \frac{{\upbeta^{1 - \upsigma } }}{\upsigma - 1}*\sum\limits_{\text{d}} {\frac{{{\text{W}}_{\text{s}} {\text{Q}}_{{ \bullet {\text{sd}}}} {\text{N}}_{\text{sd}} }}{{\Phi _{{ \bullet {\text{sd}}}} }}} . $$
(4.37)

Then using (T2.1) we obtain

$$ \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} } = \frac{{\upbeta^{1 - \upsigma } }}{\upsigma }*\sum\limits_{\text{d}} {\frac{{{\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} {\text{N}}_{\text{sd}} }}{{{\text{T}}_{\text{sd}} }}} . $$
(4.38)

From (T2.6) and (T2.9) we find that establishment costs are given by

$$ {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} = \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\Pi}_{{ \bullet {\text{sd}}}} } . $$
(4.39)

Then using (T2.5) and (T2.1) we obtain

$$ {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} = \frac{1}{\upsigma }*\sum\limits_{\text{d}} {\frac{{{\text{N}}_{\text{sd}} {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{{\text{T}}_{\text{sd}} }} - \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} } } , $$
(4.40)

which via (4.38) becomes

$$ {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} = \frac{{1 - \upbeta^{1 - \upsigma } }}{\upsigma }*\sum\limits_{\text{d}} {\frac{{{\text{N}}_{\text{sd}} {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{{\text{T}}_{\text{sd}} }}} . $$
(4.41)

Finally we add over (4.35), (4.38) and (4.41) and use (4.30) and (4.34). This gives

$$ {\text{W}}_{\text{s}} {\text{L}}_{\text{s}} = \left[ {\frac{\upsigma - 1}{\upsigma } + \frac{{\upbeta^{1 - \upsigma } }}{\upsigma } + \frac{{1 - \upbeta^{1 - \upsigma } }}{\upsigma }} \right]*\sum\limits_{\text{d}} {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}} . $$
(4.42)

Simplifying on the right hand side of (4.42) quickly gives (4.3).

  • The fixity of the shares of variable, link and establishment costs in an industry’s total costs

Our derivation of (4.3) brings out an important feature of the Melitz model with a Pareto distribution of firm productivities: the split of an industry’s total costs between variable, link and establishment costs is fixed by the variety substitution parameter σ and the Pareto parameter α [recall that β is a function of α and σ, see (2.27)]. The split does not depend on tariff rates (Tsd), preferences (δsd), the number of firms (Ns), the number of firms on links (Nsd), and rather remarkably it doesn’t depend on establishment costs per firm (HsWs) or link set-up costs per firm (FsdWs). Variable costs always account for the share (σ − 1)/σ in total costs; link costs always account for the share \( \upbeta^{1 - \upsigma } /\upsigma \); and establishment costs always account for the share \( (1 - \upbeta^{1 - \upsigma } )/\upsigma \). As we will see in Chap. 7, the determination of the cost split via just α and σ sharply simplifies calibration in a model specified in percentage changes.

Appendix 4.2: Calibration: Establishing Relationships Between Unobservables (δ, F and H) and Base-Year Data (V, T and W)

In this appendix we derive (4.5) from the Melitz sectoral model set out in Table 4.1. The algebra is tedious but not hard. Our strategy is to derive expressions for Nsd, Ns and \( \Phi_{{ \bullet {\text{sd}}}} \) in terms of V(s, d), Ws, Tsd, Fsd, Hs. σ, α (and β). These expressions lead eventually to (4.5).

  • Derivation of expression for N sd

Equation (T4.8) in Table 4.1 gives

$$ \frac{{\text{Q}_{{\hbox{min} ( {\text{s,d)}}}} }}{{\Phi_{\text{min(s,d)}} }} = {\text{F}}_{\text{sd}} *\left( {\upsigma - 1} \right). $$
(4.43)

Then via (T4.9) and (T4.10) we obtain

$$ \frac{{\text{Q}_{{ \bullet {\text{sd}}}} }}{{\Phi _{{ \bullet {\text{sd}}}} }} = {\text{F}}_{\text{sd}} *\left( {\upsigma - 1} \right)*\upbeta^{\upsigma - 1} $$
(4.44)

Equations (T4.1) and (T4.11) give

$$ {\text{V}}({\text{s}},{\text{d}}) = {\text{N}}_{\text{sd}} {\text{W}}_{\text{s}} {\text{T}}_{\text{sd}} *\frac{{\text{Q}_{{ \bullet {\text{sd}}}} }}{{\Phi_{{ \bullet {\text{sd}}}} }}*\frac{\upsigma }{\upsigma - 1} $$
(4.45)

Now using (4.44) we find that

$$ {\text{N}}_{\text{sd}} = \frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{W}}_{\text{s}} {\text{T}}_{\text{sd}} }}*\frac{{\upbeta^{1 - \upsigma } }}{{\upsigma {\text{F}}_{\text{sd}} }} $$
(4.46)
  • Derivation of expression for N s

Substituting from (4.46) and (T4.11) into (T4.5) gives

$$ 0 = \frac{1}{\upsigma }\sum\limits_{\text{d}} {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}} - \frac{{\upbeta^{1 - \upsigma } }}{\upsigma }\sum\limits_{\text{d}} {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}} - {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} , $$
(4.47)

leading to

$$ {\text{N}}_{\text{s}} = \left( {\frac{{1 - \upbeta^{1 - \upsigma } }}{{\upsigma \,{\text{H}}_{\text{s}} {\text{W}}_{\text{s}} }}} \right)*\sum\limits_{\text{d}} {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}} $$
(4.48)
  • Derivation of expression for \( \varvec{\varPhi}_{{ \bullet \varvec{sd}}} \)

Rearranging (T4.7) gives

$$ \Phi _{\text{min(s,d)}} = \left( {\frac{{{\text{N}}_{\text{sd}} }}{{{\text{N}}_{\text{s}} }}} \right)^{ - 1/\upalpha } $$
(4.49)

Now substitute in from (4.46) and (4.48) to obtain

$$ \Phi _{\text{min(s,d)}} = \left( {\frac{{\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}*\frac{1}{{{\text{F}}_{\text{sd}} }}}}{{\frac{{\left( {\upbeta^{\upsigma - 1} - 1} \right)}}{{{\text{H}}_{\text{s}} }}*\sum\nolimits_{\text{j}} {\frac{{{\text{V}}({\text{s}},{\text{j}})}}{{{\text{T}}_{\text{sj}} }}} }}} \right)^{ - 1/\upalpha } . $$
(4.50)

Then (T4.9) gives

$$ \Phi_{{ \bullet {\text{sd}}}} = \upbeta *\left( {\frac{{\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}*\frac{1}{{{\text{F}}_{\text{sd}} }}}}{{\frac{{\left( {\upbeta^{\upsigma - 1} - 1} \right)}}{{{\text{H}}_{\text{s}} }}*\sum\nolimits_{\text{j}} {\frac{{{\text{V}}({\text{s}},{\text{j}})}}{{{\text{T}}_{\text{sj}} }}} }}} \right)^{ - 1/\upalpha } . $$
(4.51)
  • Using the expressions for N sd and \( \varvec{\varPhi}_{{ \bullet \varvec{sd}}} \) to derive ( 4.5 )

Equation (T4.3) implies that

$$ {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} {\text{N}}_{\text{sd}} = \updelta_{\text{sd}}^{\upsigma } {\text{D}}_{\text{d}} \left( {\frac{{{\text{P}}_{\text{d}} }}{{{\text{P}}_{{ \bullet {\text{sd}}}} }}} \right)^{\upsigma - 1} *{\text{N}}_{\text{sd}}\quad . $$
(4.52)

Then using (T4.11) and (T4.2) we obtain

$$ {\text{V}}({\text{s}},{\text{d}}) = \left( {{\text{D}}_{\text{d}} } \right)*\frac{{\updelta_{\text{sd}}^{\upsigma } {\text{P}}_{{ \bullet {\text{sd}}}}^{1 - \upsigma } *{\text{N}}_{\text{sd}} }}{{\sum\limits_{\text{j}} {\updelta_{\text{jd}}^{\upsigma } {\text{P}}_{{ \bullet {\text{jd}}}}^{1 - \upsigma } *{\text{N}}_{\text{jd}} } }}\quad . $$
(4.53)

Dividing through by V(d, d) leads to

$$ \frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{V}}({\text{d}},{\text{d}})}} = \frac{{\updelta_{\text{sd}}^{\upsigma } {\text{P}}_{{ \bullet {\text{sd}}}}^{1 - \upsigma } *{\text{N}}_{\text{sd}} }}{{\updelta_{\text{dd}}^{\upsigma } \text{P}_{{ \bullet {\text{dd}}}}^{1 - \upsigma } *{\text{N}}_{\text{dd}} }} $$
(4.54)

which, via (T4.1), can be written as

$$ \frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{V}}({\text{d}},{\text{d}})}} = \frac{{\updelta_{\text{sd}}^{\upsigma }\Phi_{{ \bullet {\text{sd}}}}^{\upsigma - 1} *{\text{N}}_{\text{sd}} *\left( {{\text{W}}_{\text{s}} {\text{T}}_{\text{sd}} } \right)^{1 - \upsigma } }}{{\updelta_{\text{dd}}^{\upsigma }\Phi_{{ \bullet {\text{dd}}}}^{\upsigma - 1} *{\text{N}}_{\text{dd}} *\left( {{\text{W}}_{\text{d}} {\text{T}}_{\text{dd}} } \right)^{1 - \upsigma } }}\quad . $$
(4.55)

Now we use (4.46) and (4.51) to eliminate Nsd, Ndd, \( \Phi_{{ \bullet {\text{sd}}}} \) and \( \Phi_{{ \bullet {\text{dd}}}} \) for all s and d:

$$ \frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{V}}({\text{d}},{\text{d}})}} = \frac{{\updelta_{\text{sd}}^{\upsigma } \upbeta^{\upsigma - 1} *\left( {\frac{{\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}*\frac{1}{{{\text{F}}_{\text{sd}} }}}}{{\frac{{\left( {\upbeta^{\upsigma - 1} - 1} \right)}}{{{\text{H}}_{\text{s}} }}*\sum\nolimits_{\text{j}} {\frac{{{\text{V}}({\text{s}},{\text{j}})}}{{{\text{T}}_{\text{sj}} }}} }}} \right)^{{\frac{(1 - \upsigma )}{\upalpha }}} *\left( {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{W}}_{\text{s}} {\text{T}}_{\text{sd}} }}*\frac{{\upbeta^{1 - \upsigma } }}{{\upsigma {\text{F}}_{\text{sd}} }}} \right)*\left( {{\text{W}}_{\text{s}} {\text{T}}_{\text{sd}} } \right)^{1 - \upsigma } }}{{\updelta_{\text{dd}}^{\upsigma } \upbeta^{\upsigma - 1} *\left( {\frac{{\frac{{{\text{V}}({\text{d}},{\text{d}})}}{{{\text{T}}_{\text{dd}} }}*\frac{1}{{{\text{F}}_{\text{dd}} }}}}{{\frac{{\left( {\upbeta^{\upsigma - 1} - 1} \right)}}{{{\text{H}}_{\text{d}} }}*\sum\nolimits_{\text{j}} {\frac{{{\text{V}}({\text{d}},{\text{j}})}}{{{\text{T}}_{\text{dj}} }}} }}} \right)^{{\frac{(1 - \upsigma )}{\upalpha }}} *\left( {\frac{{{\text{V}}({\text{d}},{\text{d}})}}{{{\text{W}}_{\text{d}} {\text{T}}_{\text{dd}} }}*\frac{{\upbeta^{1 - \upsigma } }}{{\upsigma {\text{F}}_{\text{dd}} }}} \right)*\left( {{\text{W}}_{\text{d}} {\text{T}}_{\text{dd}} } \right)^{1 - \upsigma } }} $$
(4.56)

By simplifying (4.56) we arrive at:

$$ {\text{F}}_{\text{sd}} = {\text{F}}_{\text{dd}} *\left( {\frac{{{\text{J}}({\text{s}},{\text{d}})}}{{{\text{J}}({\text{d}},{\text{d}})}}} \right)^{{\frac{(1 - \upsigma )}{(1 + \upalpha - \upsigma )}}} *\left( {\frac{{{\text{W}}_{\text{s}} {\text{T}}_{\text{sd}} }}{{{\text{W}}_{\text{d}} {\text{T}}_{\text{dd}} }}} \right)^{{\frac{ - \upsigma *\upalpha }{(1 + \upalpha - \upsigma )}}} *\left( {\frac{{\updelta_{\text{sd}}^{{}} }}{{\updelta_{\text{dd}}^{{}} }}} \right)^{{\frac{\upsigma *\upalpha }{(1 + \upalpha - \upsigma )}}} *\left( {\frac{{{\text{H}}_{\text{s}} }}{{{\text{H}}_{\text{d}} }}} \right)^{{\frac{(1 - \upsigma )}{(1 + \upalpha - \upsigma )}}} \quad $$
(4.57)

where J(s, d) is, as defined in (4.6), the share of region s’s sales accounted for d. Finally, we substitute base-year values (marked with bars) for J’s, W’s and T’s into (4.57) to obtain (4.5).

Appendix 4.3: A Percentage Change Version of the Melitz Model: Derivation of Table 4.2 from Table 4.1

As explained in Dixon et al. (1992) there are three useful rules for converting from a levels presentation of equations to a percentage-change presentation.

  • Multiplicative rule

$$ {\text{Z}} = {\text{X}}*{\text{Y}}\;{\text{becomes}}\;{\text{z}} = {\text{x}} + {\text{y}} $$
(4.58)

where the lowercase symbols represent percentage changes in the uppercase symbols. (4.58) can be derived by total differentiation:

$$ \Delta {\text{Z}} = {\text{X}}*\Delta {\text{Y}} + \Delta {\text{X}}*{\text{Y}}\quad . $$
(4.59)

Dividing on the left-hand side by Z and on the right-hand side by X * Y and multiplying both sides by 100 gives (4.58).

  • Power rule

$$ {\text{Z}} = {\text{X}}^{\upalpha } \;{\text{becomes}}\;{\text{z}} = \upalpha *{\text{x}}\quad . $$
(4.60)

To derive (4.60) we start from

$$ \Delta {\text{Z}} = \frac{{{{\partial}} {\text{X}}^{\upalpha } }}{{{{\partial}} {\text{X}}}}*\Delta {\text{X}} = \upalpha *{\text{X}}^{\upalpha - 1} *\Delta {\text{X}}\quad . $$
(4.61)

Dividing on the left-hand side by Z and on the right-hand side by \( {\text{X}}^{\upalpha } \) and multiplying both sides by 100 gives (4.60).

  • Addition rule

$$ {\text{Z}} = {\text{X}} + {\text{Y}}\;{\text{becomes}}\;{\text{either}}\;{\text{Z}}*{\text{z}} = {\text{X}}*{\text{x}} + {\text{Y}}*{\text{y}}\;{\text{or}}\;{\text{z}} = {\text{S}}_{\text{x}} *{\text{x}} + {\text{S}}_{\text{y}} *{\text{y}} $$
(4.62)

where Sx and Sy are the shares of X and Y in Z.

To derive (4.62) we start from

$$ \Delta {\text{Z}} = \Delta {\text{X}} + \Delta {\text{Y}} $$
(4.63)

which can be written as

$$ {\text{Z}}\frac{{\Delta {\text{Z}}}}{\text{Z}} = {\text{X}}\frac{{\Delta {\text{X}}}}{\text{X}} + {\text{Y}}\frac{{\Delta {\text{Y}}}}{\text{Y}} $$
(4.64)

quickly leading to (4.62).

The conversions from (T4.1), (T4.3), (T4.4), (T4.7), (T4.8), (T4.9), (T4.10) and (T4.11) in Table 4.1 to the percentage change versions in Table 4.2 are achieved by straight-forward applications of the multiplicative and power rules.

  • Derivation of (T4.2P)

Applying all three rules to (T4.2) we obtain

$$ \left( {1 - \upsigma } \right)*{\text{p}}_{\text{d}} = \sum\limits_{\text{s}} {\frac{{{\text{N}}_{\text{sd}} *\updelta_{\text{sd}}^{\upsigma } *\text{P}_{{ \bullet {\text{sd}}}}^{1 - \upsigma } }}{{\sum\limits_{\text{j}} {{\text{N}}_{\text{jd}} *\updelta_{\text{jd}}^{\upsigma } *{\text{P}}_{{ \bullet {\text{jd}}}}^{1 - \upsigma } } }}*} \left( {{\text{n}}_{\text{sd}} + \upsigma \widehat{\updelta }_{\text{sd}}^{{}} + (1 - \upsigma )*{\text{p}}_{{ \bullet {\text{sd}}}}^{{}} } \right)\quad . $$
(4.65)

Then working with (T4.3) and (T4.11) we find that

$$ \frac{{{\text{N}}_{\text{sd}} *\updelta_{\text{sd}}^{\upsigma } *{\text{P}}_{{ \bullet {\text{sd}}}}^{1 - \upsigma } }}{{\sum\limits_{\text{j}} {{\text{N}}_{\text{jd}} *\updelta_{\text{jd}}^{\upsigma } *{\text{P}}_{{ \bullet {\text{jd}}}}^{1 - \upsigma } } }} = \frac{{{\text{V}}({\text{s}},{\text{d}})}}{{\sum\limits_{\text{j}} {{\text{V}}({\text{j}},{\text{d}})} }}\quad . $$
(4.66)

Substituting from (4.66) into (4.65) gives (T4.2P).

Derivation of (T4.5P)

Applying the addition and multiplication rules to (T4.5) we obtain

$$ \begin{aligned} 0 & = \frac{1}{\upsigma }*\sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} \frac{{{\text{P}}_{{ \bullet {\text{sd}}}} }}{{{\text{T}}_{\text{sd}} }}*{\text{Q}}_{{ \bullet {\text{sd}}}} *\left( {{\text{n}}_{\text{sd}} + {\text{p}}_{{ \bullet {\text{sd}}}} + {\text{q}}_{{ \bullet {\text{sd}}}} - {\text{t}}_{\text{sd}} } \right)} \\ & \quad - \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} *\left( {{\text{n}}_{\text{sd}} + {\text{f}}_{\text{sd}} + {\text{w}}_{\text{s}} } \right)} - {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} *\left( {{\text{n}}_{\text{s}} + {\text{h}}_{\text{s}} + {\text{w}}_{\text{s}} } \right) .\\ \end{aligned}\quad $$
(4.67)

(T4.11) gives us

$$ \frac{{{\text{N}}_{\text{sd}} {\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{{\text{T}}_{\text{sd}} }} = \frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}\quad . $$
(4.68)

From (T4.8), (T4.9), (T4.10), (T4.1) and (T4.11) we have

$$ {\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} = \frac{{\upbeta^{1 - \upsigma } }}{\upsigma }*\frac{{{\text{P}}_{{ \bullet {\text{sd}}}} {\text{Q}}_{{ \bullet {\text{sd}}}} {\text{N}}_{\text{sd}} }}{{{\text{T}}_{\text{sd}} }} = \frac{{\upbeta^{1 - \upsigma } }}{\upsigma }*\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}\quad . $$
(4.69)

(T4.5) implies that

$$ \begin{aligned} {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} {\text{W}}_{\text{s}} & = \frac{1}{\upsigma }*\sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} \frac{{{\text{P}}_{{ \bullet {\text{sd}}}} }}{{{\text{T}}_{\text{sd}} }}*{\text{Q}}_{{ \bullet {\text{sd}}}} - \sum\limits_{\text{d}} {{\text{N}}_{\text{sd}} {\text{F}}_{\text{sd}} {\text{W}}_{\text{s}} } } \\ & \quad = \frac{1}{\upsigma }*\sum\limits_{\text{d}} {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }} - \frac{{\upbeta^{1 - \upsigma } }}{\upsigma }*\sum\limits_{\text{d}} {\frac{{{\text{V}}({\text{s}},{\text{d}})}}{{{\text{T}}_{\text{sd}} }}} }. \\ \end{aligned}\quad $$
(4.70)

Substituting from (4.68), (4.69) and (4.70) into (4.67) leads to (T4.5P).

  • Derivation of (T4.6P)

Applying the addition and multiplication rules to (T4.6) we obtain

$$ \begin{aligned} {\text{W}}_{\text{s}} {\text{L}}_{\text{s}} *\left( {{\text{w}}_{\text{s}} + \ell_{\text{s}} } \right) & = \sum\limits_{\text{d}} {\frac{{{\text{W}}_{\text{s}} {\text{N}}_{\text{sd}} {\text{Q}}_{{ \bullet {\text{sd}}}} }}{{\Phi _{{ \bullet {\text{sd}}}} }}} *\left( {{\text{w}}_{\text{s}} + {\text{n}}_{\text{sd}} + {\text{q}}_{{ \bullet {\text{sd}}}} - \upphi_{{ \bullet {\text{sd}}}} } \right) \\ & \quad + \sum\limits_{\text{d}} {{\text{W}}_{\text{s}} {\text{N}}_{\text{sd}} } {\text{F}}_{\text{sd}} *\left( {{\text{w}}_{\text{s}} + {\text{n}}_{\text{sd}} + {\text{f}}_{\text{sd}} } \right) + {\text{W}}_{\text{s}} {\text{N}}_{\text{s}} {\text{H}}_{\text{s}} *\left( {{\text{w}}_{\text{s}} + {\text{n}}_{\text{s}} + {\text{h}}_{\text{s}} } \right) \\ \end{aligned}\quad . $$
(4.71)

By using (4.3), (T4.1), (4.69), (4.70) and (T4.11) we arrive at (T4.6P).

Appendix 4.4: The Irrelevance of the Absolute Values of the Initial Hss for Calibration and Estimation

For given values of the parameters σ and α, denote an initial set of variable values that satisfy the model in Table 4.1 by a superscript I. Then increase all of the H values by 1% while holding constant the observable variables V, W, T and D. A new set of variable values, denoted by the superscript N, that satisfy the equations in Table 4.1 is given by (4.72)–(4.88):

$$ {\text{H}}_{\text{s}}^{\text{N}} = {\text{H}}_{\text{s}}^{\text{I}} *(1.01)\quad {\text{for}}\;{\text{all}}\;{\text{s}} $$
(4.72)
$$ \updelta_{\text{sd}}^{\text{N}} = \updelta_{\text{sd}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.73)
$$ \text{F}_{\text{sd}}^{\text{N}} = \text{F}_{\text{sd}}^{\text{I}} *(1.01)^{{{{(\upsigma - 1)} \mathord{\left/ {\vphantom {{(\upsigma - 1)} {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.74)
$$ {\text{V}}^{\text{N}} ({\text{s}},{\text{d}}) = {\text{V}}^{\text{I}} ({\text{s}},{\text{d}})\quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.75)
$$ {\text{L}}_{\text{s}}^{\text{N}} = {\text{L}}_{\text{s}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{s}} $$
(4.76)
$$ {\text{W}}_{\text{s}}^{\text{N}} = {\text{W}}_{\text{s}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{s}} $$
(4.77)
$$ {\text{D}}_{\text{d}}^{\text{N}} = {\text{D}}_{\text{d}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{d}} $$
(4.78)
$$ {\text{T}}_{\text{sd}}^{\text{N}} = {\text{T}}_{\text{sd}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.79)
$$ {\text{N}}_{\text{s}}^{\text{N}} = {\text{N}}_{\text{s}}^{\text{I}} *(1.01)^{ - 1} \quad {\text{for}}\;{\text{all}}\;{\text{s}} $$
(4.80)
$$ \Phi_{\hbox{min} (s,d)}^{\text{N}} =\Phi_{{\hbox{min} (\text{s},\text{d})}}^{\text{I}} *(1.01)^{{{1 \mathord{\left/ {\vphantom {1 {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.81)
$$ \Phi_{{ \bullet \text{sd}}}^{\text{N}} =\Phi_{{ \bullet \text{sd}}}^{\text{I}} *(1.01)^{{{1 \mathord{\left/ {\vphantom {1 {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.82)
$$ \text{Q}_{{ \bullet \text{sd}}}^{\text{N}} = \text{Q}_{{ \bullet \text{sd}}}^{\text{I}} *(1.01)^{{{\upsigma \mathord{\left/ {\vphantom {\upsigma {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.83)
$$ \text{Q}_{{\hbox{min} (\text{s},\text{d})}}^{\text{N}} = \text{Q}_{{\hbox{min} (\text{s},\text{d})}}^{\text{I}} *(1.01)^{{{\upsigma \mathord{\left/ {\vphantom {\upsigma {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.84)
$$ \text{N}_{\text{sd}}^{\text{N}} = \text{N}_{\text{sd}}^{\text{I}} *(1.01)^{{{{(1 - \upsigma )} \mathord{\left/ {\vphantom {{(1 - \upsigma )} {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.85)
$$ \text{P}_{{ \bullet \text{sd}}}^{\text{N}} = \text{P}_{{ \bullet \text{sd}}}^{\text{I}} *(1.01)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {(\upsigma - 1 - \upalpha )}}} \right. \kern-0pt} {(\upsigma - 1 - \upalpha )}}}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.86)
$$ \text{Q}_{\text{sd}}^{\text{N}} = \text{Q}_{\text{sd}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{s}}\;{\text{and}}\;{\text{d}} $$
(4.87)
$$ \text{P}_{\text{d}}^{\text{N}} = \text{P}_{\text{d}}^{\text{I}} \quad {\text{for}}\;{\text{all}}\;{\text{d}} $$
(4.88)

The validity of this new solution can be established by substituting into left and right hand sides of (T4.1)–(T4.11).

From (4.75), (4.77), (4.78) and (4.79) we see that the proportionate change in the Hss has no effect on observables V, W, D and T. The Fjrs move uniformly, see (4.74). Thus if the \( {\text{F}}_{\text{jr}}^{\text{I}} {\text{s}} \) satisfied Balistreri et al.’s preferred structure, then the \( {\text{F}}_{\text{jr}}^{\text{N}} {\text{s}} \) satisfy this structure with proportionate changes in Outs and Ind.

With regard to Balistreri et al.’s estimating method described by (4.21)–(4.24), we now see that rescaling \( {\overline{\text{H}}}_{\text{j}} \) for all j cannot affect the estimates of α and θ. With rescaled H’s the optimal values for \( {\text{V}}^{\text{e}} ({\text{s}},{\text{d}}) \) can be achieved with the same values for α and θ, the same values for the variables with bars in (4.22), and with rescaled Fjrs.

Readers can check that (4.72)–(4.88) is not the only way to reset the values of the variables in Table 4.1 so that the observables, V, W, D and T, remain unchanged in response to a 1% change in the Hss. For example, instead of (4.74), the Fsds could increase by 1%. Then we could write down another solution for Table 4.1 with the original values of V, W, D and T. In this new solution, there would be no change in \( \Phi _{{ \bullet {\text{sd}}}}^{{}} \) rather than no change in \( {\text{Q}}_{\text{sd}}^{{}} \). \( {\text{P}}_{{ \bullet {\text{sd}}}}^{{}} \) would not change, Nsd and Ns would decrease by 1%, \( {\text{Q}}_{{ \bullet {\text{sd}}}}^{{}} \) would increase by 1%, etc. We suspect that what this means for the Balistreri et al. estimating method is that a normalization must be imposed on Outs in (4.24). However, on reading the article it wasn’t clear to us how this was done.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dixon, P.B., Jerie, M., Rimmer, M.T. (2018). Calibration and Parameter Estimation for a Melitz Sector in a CGE Model. In: Trade Theory in Computable General Equilibrium Models. Advances in Applied General Equilibrium Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-10-8325-9_4

Download citation

Publish with us

Policies and ethics