Skip to main content

Novel MRI Contrast from Magnetotactic Bacteria to Evaluate In Vivo Stem Cell Engraftment

  • Chapter
  • First Online:
Biological, Physical and Technical Basics of Cell Engineering

Abstract

Although human induced pluripotent stem cells (iPSCs) and their derivatives have great potential for the treatment of heart failure. The therapeutic benefit is limited by translational challenges of stem cells such as cell engraftment. Thus, a robust in vivo imaging technology is indispensable to advance the clinical implementation of stem cell therapy. While no available imaging technology meets the requirement for in vivo stem cell tracking, MRI is a highly promising tool due to its high spatial resolution, temporal resolution, and tissue contrast; yet, this modality lacks sensitivity. Superparamagnetic iron oxide particles (SPIONs) addresses this critical imaging issue and have been used as an MRI contrast agent for stem cell tracking. However, their critical limitation is the inability to evaluate cell viability as SPIONs remain in the tissue long after the death of transplanted cells. To address this shortcoming of SPIONs, the novel magneto-endosymbiont-based (MEs) contrast agent was developed (Magnelle®, Bell Biosystems, Inc., South SF, CA). The MEs utilize the magnetosome biosynthesized by magnetotactic bacteria (MTB), a specific intracellular structure containing inorganic magnetic iron crystals (magnetite or greigite). Having superparamagnetic property like SPIONs, MEs can be detected on T2* weighted imaging. MEs have high safety profile and do not interfere with the functions of transfected cells. Unlike SPIONs, the antiginecity of the MEs are readily recognized and removed from macrophages quickly after the death of labeled cells, eliminating signals from dead cells. In the previous study from our group, iPSC derived cardiomyocytes were labeled with MEs and detected successfully on MRI after transplantation into the heart. In vivo ME signals corresponded with luciferase-based bioluminescence imaging (BLI) of the transplanted cell viability. In conclusion, ME is a novel MRI contrast agent for in vivo cellular tracking that allows accurate longitudinal visualization of the engrafted cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  Google Scholar 

  2. Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  Google Scholar 

  3. Tanaka, A., Yuasa, S., Node, K., & Fukuda, K. (2015). Cardiovascular disease modeling using patient-specific induced pluripotent stem cells. International Journal of Molecular Sciences, 16, 18894–18922.

    Article  Google Scholar 

  4. Maehr, R., et al. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Science U. S. A., 106, 15768–15773.

    Article  Google Scholar 

  5. Richard, J.-P., & Maragakis, N. J. (2015). Induced pluripotent stem cells from ALS patients for disease modeling. Brain Research, 1607, 15–25.

    Article  Google Scholar 

  6. Payne, N. L., et al. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32, 212–228.

    Article  Google Scholar 

  7. Chidgey, A. P., Layton, D., Trounson, A., & Boyd, R. L. (2008). Tolerance strategies for stem-cell-based therapies. Nature, 453, 330–337.

    Article  Google Scholar 

  8. Jung, J.-H., Fu, X., & Yang, P. C. (2017). Exosomes generated from iPSC-derivatives: New direction for stem cell therapy in human heart diseases. Circulation Research, 120, 407–417.

    Article  Google Scholar 

  9. Hynes, B., et al. (2013). Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. European Heart Journal, 34, 782–789.

    Article  Google Scholar 

  10. Valina, C., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.

    Article  Google Scholar 

  11. Rota, M., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.

    Article  Google Scholar 

  12. Hare, J. M., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    Article  Google Scholar 

  13. Kehat, I., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.

    Article  Google Scholar 

  14. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, activin/nodal and BMP signaling. Development, 135, 2969–2979.

    Article  Google Scholar 

  15. Chong, J. J. H., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510, 273–277.

    Article  Google Scholar 

  16. Mauritz, C., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.

    Article  Google Scholar 

  17. Zhang, J., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.

    Article  Google Scholar 

  18. Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.

    Article  Google Scholar 

  19. Frangioni, J. V., & Hajjar, R. J. (2004). In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation, 110, 3378–3383.

    Article  Google Scholar 

  20. Li, Z., et al. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells (Dayton, Ohio), 26, 864–873.

    Article  Google Scholar 

  21. Parashurama, N., et al. (2016). Multimodality molecular imaging of cardiac cell transplantation: Part II. In vivo imaging of bone marrow stromal cells in swine with PET/CT and MR imaging. Radiology, 280, 826–836.

    Article  Google Scholar 

  22. Parashurama, N., et al. (2016). Multimodality molecular imaging of cardiac cell transplantation: Part I. Reporter gene design, characterization, and optical in vivo imaging of bone marrow stromal cells after myocardial infarction. Radiology, 280, 815–825.

    Article  Google Scholar 

  23. von der Haar, K., Lavrentieva, A., Stahl, F., Scheper, T., & Blume, C. (2015). Lost signature: Progress and failures in in vivo tracking of implanted stem cells. Applied Microbiology and Biotechnology, 99, 9907–9922.

    Article  Google Scholar 

  24. Lewin, M., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18, 410–414.

    Article  Google Scholar 

  25. Jasmin, et al. (2011). Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanobiotechnology, 9(4).

    Article  Google Scholar 

  26. Cunningham, C. H., et al. (2005). Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magnetic Resonance in Medicine, 53, 999–1005.

    Article  Google Scholar 

  27. Arai, T., et al. (2006). Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magnetic Resonance in Medicine, 55, 203–209.

    Article  Google Scholar 

  28. Dash, R., et al. (2011). Dual manganese-enhanced and delayed gadolinium-enhanced MRI detects myocardial border zone injury in a pig ischemia-reperfusion model. Circulation: Cardiovascular Imaging, 4, 574–582.

    Google Scholar 

  29. Hung, T.-C., et al. (2008). Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circulation: Cardiovascular Imaging, 1, 6–13.

    Google Scholar 

  30. Nishida, K., et al. (2006). Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. NeuroReport, 17, 1269–1272.

    Article  Google Scholar 

  31. Vandergriff, A. C., et al. (2014). Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials, 35, 8528–8539.

    Article  Google Scholar 

  32. Uchida, M., et al. (2008). A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magnetic Resonance in Medicine, 60, 1073–1081.

    Article  Google Scholar 

  33. Nitz, W. R., & Reimer, P. (1999). Contrast mechanisms in MR imaging. European Radiology, 9, 1032–1046.

    Article  Google Scholar 

  34. Bos, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233, 781–789.

    Article  Google Scholar 

  35. Santoyo Salazar, J., et al. (2011). Magnetic iron oxide nanoparticles in 10–40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chemistry of Materials, 23, 1379–1386.

    Article  Google Scholar 

  36. Moraes, L., et al. (2012). Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Research, 9, 143–155.

    Article  Google Scholar 

  37. Bull, E., et al. (2014). Stem cell tracking using iron oxide nanoparticles. International Journal of Nanomedicine, 9, 1641–1653.

    Google Scholar 

  38. Hillaireau, H., & Couvreur, P. (2009). Nanocarriers’ entry into the cell: Relevance to drug delivery. Cellular and Molecular Life Sciences CMLS, 66, 2873–2896.

    Article  Google Scholar 

  39. Cores, J., Caranasos, T. G., & Cheng, K. (2015). Magnetically targeted stem cell delivery for regenerative medicine. Journal of Functional Biomaterials, 6, 526–546.

    Article  Google Scholar 

  40. Suzuki, Y., et al. (2007). In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magnetic Resonance in Medicine, 57, 1173–1179.

    Article  Google Scholar 

  41. Qiu, B., et al. (2010). Magnetosonoporation: instant magnetic labeling of stem cells. Magnetic Resonance in Medicine, 63, 1437–1441.

    Article  Google Scholar 

  42. Walczak, P., Kedziorek, D. A., Gilad, A. A., Lin, S., & Bulte, J. W. M. (2005). Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine, 54, 769–774.

    Article  Google Scholar 

  43. Khurana, A., et al. (2013). Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology, 269, 186–197.

    Article  Google Scholar 

  44. Liu, L., et al. (2016). A new method for preparing mesenchymal stem cells and labeling with ferumoxytol for cell tracking by MRI. Scientific Reports, 6, 26271.

    Article  Google Scholar 

  45. Chen, J., et al. (2013). Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Applied Materials & Interfaces, 5, 5976–5985.

    Article  Google Scholar 

  46. Chung, J., et al. (2011). In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magnetic Resonance in Medicine, 66, 1374–1381.

    Article  Google Scholar 

  47. Singh, N., Jenkins, G. J. S., Asadi, R., & Doak, S. H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 1.

    Article  Google Scholar 

  48. Elias, A., & Tsourkas, A. (2009). Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology American Society Hematology Education Program 720–726. https://doi.org/10.1182/asheducation-2009.1.720.

    Article  Google Scholar 

  49. Chen, I. Y., et al. (2009). Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Molecular Imaging and Biology (MIB) Official Publication of the Academy of Molecular Imaging, 11, 178–187.

    Article  Google Scholar 

  50. Suzuki, Y., et al. (2008). In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magnetic Resonance in Medicine, 60, 1269–1275.

    Article  Google Scholar 

  51. Terrovitis, J., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117, 1555–1562.

    Article  Google Scholar 

  52. Kim, J. A., Åberg, C., Salvati, A., & Dawson, K. A. (2011). Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotechnology, 7, 62–68.

    Article  Google Scholar 

  53. Hendry, S. L., et al. (2008). Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells. The Journal of Thoracic and Cardiovascular Surgery, 136, 1028–1037.e1.

    Article  Google Scholar 

  54. Kim, P. J., et al. (2015). Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circulation Research, 116, e40–e50.

    Article  Google Scholar 

  55. Blakemore, R. (1975). Magnetotactic bacteria. Science, 190, 377–379.

    Article  Google Scholar 

  56. Yan, L., et al. (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167, 507–519.

    Article  Google Scholar 

  57. Schüler, D., & Frankel, R. B. (1999). Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 52, 464–473.

    Article  Google Scholar 

  58. Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., & Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 5, 977–999.

    Article  Google Scholar 

  59. Araujo, A. C. V., Abreu, F., Silva, K. T., Bazylinski, D. A., & Lins, U. (2015). Magnetotactic bacteria as potential sources of bioproducts. Marine Drugs, 13, 389–430.

    Article  Google Scholar 

  60. Mahmoudi, M., et al. (2016). Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes. Scientific Reports, 6.

    Google Scholar 

  61. Komeili, A. (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiology Reviews, 36, 232–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip C. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jung, JH., Tada, Y., Yang, P.C. (2018). Novel MRI Contrast from Magnetotactic Bacteria to Evaluate In Vivo Stem Cell Engraftment. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics