Skip to main content

Magnetoelectric Effect in Single-Phase Multiferroic Materials

  • Chapter
  • First Online:
Nano/Micro-Structured Materials for Energy and Biomedical Applications

Abstract

Recently, there has been an increasing interest in multiferroic compounds owing to the coexistence of different ferroic order parameters, suggesting great commercial and technological potential. Compared to composites which exhibit multiferroic properties due to synergistic coupling effects between different components, single-phase multiferroic materials exhibiting the magnetoelectric effect (ME) have attracted much attention because of their special crystal structure that contributes to ME, thereby offering promising potential for applications in spintronic devices. This chapter will provide an extensive discussion on single-phase ME materials with specific focus centered on various categories of ME materials based on their different mechanisms. The physical principles of ferromagnetism (FM), ferroelectricity (FE), and ME effects as a result of coupling interactions between FM and FE are first discussed in Sect. 2. Section 3 mainly concentrates on distinct types of single-phase ME materials with different underlying ME mechanisms. Section 4 provides a summary and perspective on future developments in the synthesis of a wide range of magnetoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaczer J, Shalniko T, Hauptman Z et al (1968) Some properties of ferromagnetoelectric nickel iodine boracite. J Appl Phys 39:429

    Article  Google Scholar 

  2. Murray AF, Lockwood DJ (1978) Structural and magnetic transitions in nickel iodine boracite—light-scattering study. J Phys C-Sol State Phys 11(23):4651–4664

    Article  Google Scholar 

  3. Kleemann W (2013) Magnetoelectric spintronics. J Appl Phys 114(2):1–3

    Google Scholar 

  4. Tong WY, Fang YW, Cai J et al (2016) Theoretical studies of all-electric spintronics utilizing multiferroic and magnetoelectric materials. Comp Mater Sci 112:467–477

    Article  Google Scholar 

  5. Qi XL, Hughes TL, Zhang SC (2008) Fractional charge and quantized current in the quantum spin Hall state. Nat Phys 4(4):273–276

    Article  Google Scholar 

  6. Baek SH, Jang HW, Folkman CM et al (2010) Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mat 9(4):309–314

    Google Scholar 

  7. Gerhard L, Yamada TK, Balashov T et al (2010) Magnetoelectric coupling at metal surfaces. Nat Nanotechnol 5(11):792–797

    Article  Google Scholar 

  8. Lottermoser T, Lonkai T, Amann U et al (2004) Magnetic phase control by an electric field. Nature 430:541–544

    Article  Google Scholar 

  9. Israel C, Mathur ND, Scott JF (2008) A one-cent room-temperature magnetoelectric sensor. Nat Mater 7(2):93–94

    Article  Google Scholar 

  10. Jahns R, Greve H, Woltermann E et al (2012) Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sensors Actuators a-Physical 183:16–21

    Article  Google Scholar 

  11. Zhai JY, Xing ZP, Dong SX et al (2006) Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl Phys Lett 88(6)

    Google Scholar 

  12. Bichurin MI, Kornev IA, Petrov VM et al (1997) Investigation of magnetoelectric interaction in composite. Ferroelectrics 204(1–4):289–297

    Article  Google Scholar 

  13. Nagashima K, Yanagida T, Oka K et al (2010) Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett 10(4):1359–1363

    Article  Google Scholar 

  14. Curie P (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J Phys Theor Appl 3, 22

    Google Scholar 

  15. Debye P (1926) Remark to some new trials on a magneto-electrical direct effect. Z Angew Phys 36(4):300–301

    Google Scholar 

  16. Hehl FW, Obukhov YN, Rivera JP et al (2009) Magnetoelectric Cr2O3 and relativity theory. Euro Phys J B 71(3):321–329

    Article  Google Scholar 

  17. Dzyaloshinskii IE (1960) On the magneto-electrical effect in antiferromagnets. Sov Phys Jetp-Ussr 10(3):628–629

    Google Scholar 

  18. Astrov DN (1961) Magnetoelectric effect in chromium oxide. Sov Phys Jetp-Ussr 13(4):729–733

    Google Scholar 

  19. Newnham LEC a R E (1987) History of ferroelectrics. High-Technol Ceram 1987; Vol. III, p 17

    Google Scholar 

  20. Valasek J (1921) Piezo-electric and allied phenomena in Rochelle salt. Phys Rev 17(4):475–481

    Article  Google Scholar 

  21. Valasek J (1922) Properties of Rochelle salt related to the piezo-electric effect. Phys Rev 20(6):639–664

    Article  Google Scholar 

  22. Dearaujo CAP, Cuchiaro JD, Mcmillan LD et al (1995) Fatigue-free ferroelectric capacitors with platinum-electrodes. Nature 374(6523):627–629

    Article  Google Scholar 

  23. Snyder B, Lee S, Smith NB et al (2006) Ferroelectric transducer arrays for transdermal insulin delivery. J Mat Sci 41(1):211–216

    Article  Google Scholar 

  24. Ng TN, Schwartz DE, Lavery LL et al (2012) Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory. Sci Rep 2(585):1–7

    Google Scholar 

  25. Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 10(2):136–146

    Article  Google Scholar 

  26. Wu WZ, Wang L, Li YL et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523):470–473

    Article  Google Scholar 

  27. Ok KM, Chi EO, Halasyamani PS (2006) Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem Soc Rev 35(8):710–717

    Article  Google Scholar 

  28. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D-Appl Phys 38(8):R123–R152

    Article  Google Scholar 

  29. Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104(29):6694–6709

    Article  Google Scholar 

  30. Gao XS, Chen XY, Yin J et al (2000) Ferroelectric and dielectric properties of ferroelectromagnet Pb(Fe1/2Nb1/2)O−3 ceramics and thin films. J Mater Scie 35(21):5421–5425

    Article  Google Scholar 

  31. Smolenskii GA, Agranovskaia AI, Popov SN et al (1958) New ferroelectrics of complex composition .2. Pb2fe3 + Nbo6 and Pb2ybnbo6. Sov Phys-Tech Phys 3(10):1981–1982

    Google Scholar 

  32. Quezel S, Tcheou F, Rossatmignod J et al (1977) Magnetic-structure of perovskite-like compound Tbmno3. Physica B & C 86:916–918

    Google Scholar 

  33. Kumar V, Gaur A, Sharma N et al (2013) High temperature dielectric and magnetic response of Ti and Pr doped BiFeO3 ceramics. Ceram Int 39(7):8113–8121

    Article  Google Scholar 

  34. Howes B, Pelizzone M, Fischer P et al (1984) Characterization of some magnetic and magnetoelectric properties of ferroelectric Pb(Fe1/2Nb1/2)O3. Ferroelectrics 54(1–4):657–660

    Google Scholar 

  35. Randall CA, Bhalla AS (1990) Nanostructural-property relations in complex lead perovskites. Jap J Appl Phys Part 1 29(2):327–333

    Google Scholar 

  36. Watanabe T, Kohn K (1989) Magnetoelectric effect and low-temperature transition of Pb(Fe1/2Nb1/2)O3 single-crystal. Phase Trans 15(1):57–68

    Article  Google Scholar 

  37. Lente MH, Guerra JDS, de Souza GKS et al (2008) Nature of the magnetoelectric coupling in multiferroic Pb(Fe1/2Nb1/2)O3 ceramics. Phys Rev B 78(5)

    Google Scholar 

  38. Shvartsman VV, Kleemann W, Haumont R et al (2007) Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl Phys Lett 90(17)

    Google Scholar 

  39. Cox DE, Shirane G, Takei WJ (1963) A magnetic and neutron diffraction study of Cr2O3-Fe2O3 system. J Phys Chem Sol 24(3):405–423

    Article  Google Scholar 

  40. Kimura T, Goto T, Shintani H et al (2003) Magnetic control of ferroelectric polarization. Nature 426(6962):55–58

    Google Scholar 

  41. Kimura T (2007) Spiral magnets as magnetoelectrics. Annu Rev Mater Res 37:387–413

    Article  Google Scholar 

  42. Le Bras G, Colson D, Forget A et al (2009) Magnetization and magnetoelectric effect in Bi1-xLaxFeO3 (0 <= x <= 0.15). Phys Rev B 80(13)

    Google Scholar 

  43. Kadomtseva AM, Zvezdin AK, Popov YF et al (2004) Space-time parity violation and magnetoelectric interactions in antiferromagnets. JETP Lett 79(11):571–581

    Article  Google Scholar 

  44. Volkova LM, Marinin DV (2011) Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry. J Supercond Novel Magn 24(7):2161–2177

    Article  Google Scholar 

  45. Belov DV, Vorobev GP, Kadomtseva AM et al (1993) Magnetoelectric effect in the spin-flop phase of Cr2O3 and the problem of determining the magnetic-structure. JETP Lett 58(8):579–584

    Google Scholar 

  46. Popov YF, Zvezdin AK, Vorobev GP et al (1993) Linear magnetoelectric effect and phase-transitions in bismuth ferrite, BifeO3. JETP Lett 57(1):69–73

    Google Scholar 

  47. Lebeugle D, Colson D, Forget A et al (2008) Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys Rev Lett 100(22)

    Google Scholar 

  48. Kothari D, Reddy VR, Gupta A et al (2010) Eu doping in multiferroic BiFeO3 ceramics studied by Mossbauer and EXAFS spectroscopy. J Phys-Condens Mat 22(35)

    Google Scholar 

  49. Simoes AZ, Aguiar EC, Gonzalez AHM et al (2008) Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. J Appl Phys 104(10)

    Google Scholar 

  50. Wang J, Neaton JB, Zheng H et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722

    Article  Google Scholar 

  51. Bai FM, Wang JL, Wuttig M et al (2005) Destruction of spin cycloid in (111)(c)-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization. Appl Phys Lett 86(3)

    Google Scholar 

  52. Kumar MM, Palkar VR, Srinivas K et al (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76(19):2764–2766

    Article  Google Scholar 

  53. Szafraniak I, Polomska M, Hilczer B et al (2007) Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis. J Euro Ceram Soc 27(13–15):4399–4402

    Article  Google Scholar 

  54. Hu YM, Fei LF, Zhang YL et al (2011) Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature. J Nanomater 1–6

    Google Scholar 

  55. Aguiar EC, Ramirez MA, Moura F et al (2013) Low-temperature synthesis of nanosized bismuth ferrite by the soft chemical method. Ceram Int 39(1):13–20

    Article  Google Scholar 

  56. Das N, Majumdar R, Sen A, Maiti HS (2007) Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater Lett 61(10):2100–2104

    Google Scholar 

  57. Park TJ, Papaefthymiou GC, Viescas AJ et al (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772

    Article  Google Scholar 

  58. Kajimoto R, Yoshizawa H, Shintani H et al (2004) Magnetic structure of TbMnO3 by neutron diffraction. Phys Rev B 70(21)

    Google Scholar 

  59. Lee JH, Murugavel P, Ryu H et al (2006) Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Adv Mater 18(23):3125–3129

    Article  Google Scholar 

  60. Kimura T, Lawes G, Ramirez AP (2005) Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys Rev Lett 94(13)

    Google Scholar 

  61. Rado GT (1964) Observation and possible mechanisms of magnetoelectric effects in ferromagnet. Phys Rev Lett 13(10):335

    Google Scholar 

  62. Liu X H, Hong MH, Song WD et al (2004) Pulsed laser deposition of oriented barium ferrite (BaFe12O19) thin films. Appl Phys A-Mater Sci Process 78(3):423–425

    Google Scholar 

  63. Knizek K, Novak P, Kupferling M (2006) Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations. Phys Rev B 73(15)

    Google Scholar 

  64. Chai YS, Chun SH, Haam SY et al (2009) Low-magnetic-field control of dielectric constant at room temperature realized in Ba0.5Sr1.5Zn2Fe12O22. New J Phys 11

    Google Scholar 

  65. Kamba S, Goian V, Savinov M et al (2010) Dielectric, magnetic, and lattice dynamics properties of Y-type hexaferrite Ba0.5Sr1.5Zn2Fe12O22: Comparison of ceramics and single crystals. J Appl Phys 107(10)

    Google Scholar 

  66. Ishiwata S, Taguchi Y, Murakawa H et al (2008) Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319(5870):1643–1646

    Article  Google Scholar 

  67. Chun SH, Chai YS, Oh YS et al (2010) Realization of giant magnetoelectricity in helimagnets. Phys Rev Lett 104(4):037204

    Google Scholar 

  68. Chai YS, Kwon S, Chun SH et al (2014) Electrical control of large magnetization reversal in a helimagnet. Nat Commun 5:1–8

    Article  Google Scholar 

  69. Kitagawa Y, Hiraoka Y, Honda T et al (2010) Low-field magnetoelectric effect at room temperature. Nat Mater 9(10):797–802

    Article  Google Scholar 

  70. Takada Y, Nakagawa T, Tokunaga M et al (2006) Crystal and magnetic structures and their temperature dependence of Co(2)Z-type hexaferrite (Ba,Sr)(3)Co2Fe24O41 by high-temperature neutron diffraction. J Appl Phys 100(4)

    Google Scholar 

  71. Zhang HG, Li LT, Zhou J et al (2001) Low-temperature sintering, densification, and properties of Z-type hexaferrite with Bi2O3 additives. J Am Ceram Soc 84(12):2889–2894

    Article  Google Scholar 

  72. Pullar RC, Appleton SG, Stacey MH et al (1998) The manufacture and characterisation of aligned fibres of the ferroxplana ferrites Co2Z, 0.67% CaO-doped Co2Z, Co2Y and Co2W. J Magn Magn Mater 186(3):313–325

    Article  Google Scholar 

  73. Pullar RC, Bhattacharya AK (2001) The synthesis and characterization of the hexagonal Z ferrite, Sr3Co2Fe24O41, from a sol-gel precursor. Mater Res Bull 36(7–8):1531–1538

    Article  Google Scholar 

  74. Ascher E, Rieder H, Schmid H et al (1966) some properties of ferromagnetoelectric nickel-iodine boracite Ni3b7O13I. J Appl Phys 37(3):1404–1405

    Article  Google Scholar 

  75. Schmid H, Rieder H, Ascher E (1965) Magnetic susceptibilities of some 3d transition metal boracites. Sol State Comm 3(10):327–330

    Article  Google Scholar 

  76. Sannikov DG (1997) Phenomenological theory of the magnetoelectric effect in some boracites. J Exp Theo Phys 84(2):293–299

    Article  Google Scholar 

  77. Liu YL, Lockman Z, Aziz A et al (2008) Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. J Phys-Condens Mat 20(16)

    Google Scholar 

  78. Phokha S, Pinitsoontorn S, Chirawatkul P et al (2012) Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res Lett 2012:7

    Google Scholar 

  79. Sundaresan A, Bhargavi R, Rangarajan N et al (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74(16)

    Google Scholar 

  80. Catalan G, Scott JF (2004) Physics and applications of bismuth ferrite. Adv Mater 21(24):2463–2485

    Article  Google Scholar 

  81. Pang XC, He YJ, Jiang BB et al (2013) Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale 5(18):8695–8702

    Article  Google Scholar 

  82. Pang XC, Zhao L, Han W et al (2013) A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nanotechnol 8(6):426–431

    Article  Google Scholar 

  83. Yang D, Pang XC, He YJ et al (2015) Precisely size-tunable magnetic/plasmonic core/shell nanoparticles with controlled optical properties. Angew Chem Int Edit 54(41):12091–12096

    Article  Google Scholar 

  84. Zheng DJ, Pang XC, Wang MY et al (2015) Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion. Chem Mater 27(15):5271–5278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, Y., Iocozzia, J., Lin, Z. (2018). Magnetoelectric Effect in Single-Phase Multiferroic Materials. In: Li, B., Jiao, T. (eds) Nano/Micro-Structured Materials for Energy and Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7787-6_2

Download citation

Publish with us

Policies and ethics