Skip to main content

Inkjet-Printed Sensors on Flexible Substrates

  • Chapter
  • First Online:
Environmental, Chemical and Medical Sensors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Printing processes are gaining much prominence in sensing technologies through which smart materials can be deposited over flexible substrates. The attractive features of inkjet printing processes to replace other material deposition techniques are in terms of simplicity, low cost, environment friendliness, high resolution, less waste generation and mass production. This chapter presents a summary of various thin-film smart sensors as developed by inkjet printing processes over flexible substrates. The critical parameters for the printable ink, materials for the sensing applications, substrates for flexible electronics, advantages and challenges of inkjet printing method and its exploration for future flexible electronics sensors are visited through this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agina EV, Sizov AS, Yablokov MY, Borshchev OV, Bessonov AA, Kirikova MN, Bailey MJ, Ponomarenko SA (2015) Polymer surface engineering for efficient printing of highly conductive metal nanoparticle inks. ACS Appl Mater Interfaces 7(22):11755–11764

    Article  Google Scholar 

  • Andò B, Baglio S (2013) All-inkjet printed strain sensors. IEEE Sens J 13(12):4874–4879

    Article  Google Scholar 

  • Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13(1):126–135

    Article  Google Scholar 

  • Arrese J, Vescio G, Xuriguera E, Medina-Rodriguez B, Cornet A, Cirera A (2017) Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink. J Appl Phys 121(10):104904

    Article  Google Scholar 

  • Belsey K, Parry A, Rumens C, Ziai M, Yeates S, Batchelor JC, Holder SJ (2017) Switchable disposable passive RFID vapour sensors from inkjet printed electronic components integrated with PDMS as a stimulus responsive material. J Mater Chem C 5(12):3167–3175

    Article  Google Scholar 

  • Bernacka-Wojcik I, Wojcik P, Aguas H, Fortunato E, Martins R (2016) Inkjet printed highly porous TiO2 films for improved electrical properties of photoanode. J Colloid Interface Sci 465:208–214

    Article  Google Scholar 

  • Bhatt G, Kumar S, Sundriyal P, Bhushan P, Basu A, Singh J, Bhattacharya S (2016) Microfluidics overview. Microfluidics for biologists. Springer, Berlin, pp 33–83

    Chapter  Google Scholar 

  • Choi M-C, Kim Y, Ha C-S (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33(6):581–630

    Article  Google Scholar 

  • Creran B, Li X, Duncan B, Kim CS, Moyano DF, Rotello VM (2014) Detection of bacteria using inkjet-printed enzymatic test strips. ACS Appl Mater Interfaces 6(22):19525–19530

    Article  Google Scholar 

  • Crowley K, O’Malley E, Morrin A, Smyth MR, Killard AJ (2008) An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 133(3):391–399

    Article  Google Scholar 

  • Das SR, Nian Q, Cargill AA, Hondred JA, Ding S, Saei M, Cheng GJ, Claussen JC (2016) 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale 8(35):15870–15879

    Article  Google Scholar 

  • Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28(11):815–818

    Article  Google Scholar 

  • Drahi E, Gupta A, Blayac S, Saunier S, Benaben P (2014) Characterization of sintered inkjet-printed silicon nanoparticle thin films for thermoelectric devices. Phys Status Solidi A 211(6):1301–1307

    Article  Google Scholar 

  • Farooqui MF, Shamim A (2016) Low cost inkjet printed smart bandage for wireless monitoring of chronic wounds. Sci Rep 6:28949

    Article  Google Scholar 

  • Foley TJ, Johnson CE, Higa KT (2005) Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 17(16):4086–4091

    Article  Google Scholar 

  • Fromm J (1984) Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res Dev 28(3):322–333

    Article  Google Scholar 

  • Hamad E, Bilatto S, Adly N, Correa D, Wolfrum B, Schöning MJ, Offenhäusser A, Yakushenko A (2016) Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices. Lab Chip 16(1):70–74

    Article  Google Scholar 

  • Hwang H, Kim S-H, Kim T-H, Park J-K, Cho Y-K (2011) Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 11(20):3404–3406

    Article  Google Scholar 

  • Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25(5):2629–2635

    Article  Google Scholar 

  • Kim DS, Khan A, Rahman K, Khan S, Kim HC, Choi KH (2011) Drop-on-demand direct printing of colloidal copper nanoparticles by electrohydrodynamic atomization. Mater Manuf Process 26(9):1196–1201

    Article  Google Scholar 

  • Kimura J, Kawana Y, Kuriyama T (1989) An immobilized enzyme membrane fabrication method using an ink jet nozzle. Biosensors 4(1):41–52

    Article  Google Scholar 

  • Komuro N, Takaki S, Suzuki K, Citterio D (2013) Inkjet printed (bio) chemical sensing devices. Anal Bioanal Chem 405(17):5785–5805

    Article  Google Scholar 

  • Kukkola J, Mohl M, Leino A-R, Tóth G, Wu M-C, Shchukarev A, Popov A, Mikkola J-P, Lauri J, Riihimäki M (2012) Inkjet-printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. J Mater Chem 22(34):17878–17886

    Article  Google Scholar 

  • Lee Y-I, Choa Y-H (2012) Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. J Mater Chem 22(25):12517–12522

    Article  Google Scholar 

  • Lee Y-I, Kwon Y-T, Kim S, Lee K-J, Choa Y-H (2016) Hydrazine vapor-based rapid and low temperature post-processing for inkjet printed conductive copper patterns. Thin Solid Films 616:260–264

    Article  Google Scholar 

  • Lesch A, Jović M, Baudoz M, Zhu Y, Tacchini P, Gumy F, Girault HH (2017) Point-of-care diagnostics with inkjet-printed microchips. ECS Trans 77(7):73–81

    Article  Google Scholar 

  • Ma S, Ribeiro F, Powell K, Lutian J, Møller C, Large T, Holbery J (2015) Fabrication of novel transparent touch sensing device via drop-on-demand inkjet printing technique. ACS Appl Mater Interfaces 7(39):21628–21633

    Article  Google Scholar 

  • Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polymer films for the detection of organic vapors. IEEE Sens J 6(6):1435–1444

    Article  Google Scholar 

  • MacDonald WA, Looney M, MacKerron D, Eveson R, Adam R, Hashimoto K, Rakos K (2007) Latest advances in substrates for flexible electronics. J Soc Inform Display 15(12):1075–1083

    Article  Google Scholar 

  • Morse J, Zhao Y, Rotello V, Nugen S, Watkins J (2016) Wearable microfluidic biomarker sensor for human performance assessment. In: Electronic system-integration technology conference (ESTC), 2016 6th, IEEE, pp 1–3

    Google Scholar 

  • Patel V, Sundriyal P, Bhattacharya S (2017) Aloe-vera vs. poly (ethylene) glycol-based synthesis and relative catalytic activity investigations of ZnO nanorods in thermal decomposition of potassium perchlorate. Part Sci Tech 35:1–8

    Google Scholar 

  • Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96(2):248–270

    Article  Google Scholar 

  • Pi X, Zhang L, Yang D (2012) Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink. J Phys Chem C 116(40):21240–21243

    Article  Google Scholar 

  • Qin Y, Kwon H-J, Subrahmanyam A, Howlader MM, Selvaganapathy PR, Adronov A, Deen MJ (2016) Inkjet-printed bifunctional carbon nanotubes for pH sensing. Mater Lett 176:68–70

    Article  Google Scholar 

  • Rieu M, Camara M, Tournier G, Viricelle J, Pijolat C, de Rooij N, Briand D (2015) Inkjet printed SnO2 gas sensor on plastic substrate. Procedia Engineering 120:75–78

    Article  Google Scholar 

  • Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing—process and its applications. Adv Mater 22(6):673–685

    Article  Google Scholar 

  • Song E, da Costa TH, Choi J-W (2017) A chemiresistive glucose sensor fabricated by inkjet printing. Microsys Tech 23(8):1–7

    Google Scholar 

  • Stempien Z, Kozicki M, Pawlak R, Korzeniewska E, Owczarek G, Poscik A, Sajna D (2016a) Ammonia gas sensors ink-jet printed on textile substrates. In: Sensors, 2016 IEEE, pp 1–3

    Google Scholar 

  • Stempien Z, Rybicki E, Rybicki T, Lesnikowski J (2016b) Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications. Sens Actuators B Chem 224:714–725

    Article  Google Scholar 

  • Sundriyal P, Bhattacharya S (2017) Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 9(44):38507–38521

    Google Scholar 

  • Tsangarides CP, Ma H, Nathan A (2016) ZnO nanowire array growth on precisely controlled patterns of inkjet-printed zinc acetate at low-temperatures. Nanoscale 8(22):11760–11765

    Article  Google Scholar 

  • Wang L, Loh KJ (2017) Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance. Smart Mater Struct 26(5):055018

    Article  Google Scholar 

  • Wang Y, Guo H, Chen J-J, Sowade E, Wang Y, Liang K, Marcus K, Baumann RR, Feng Z-S (2016) Paper-based inkjet-printed flexible electronic circuits. ACS Appl Mater Int 8(39):26112–26118

    Article  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  • Zardetto V, Brown TM, Reale A, Di Carlo A (2011) Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci Part B Polym Phys 49(9):638–648

    Article  Google Scholar 

  • Zhang X, Wasserberg D, Breukers C, Terstappen LW, Beck M (2016) Temperature-switch cytometry releasing antibody on demand from inkjet-printed gelatin for on-chip immunostaining. ACS Appl Mater Interfaces 8(41):27539–27545

    Article  Google Scholar 

  • Zheng Y, He Z, Gao Y, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Scientific reports 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Sundriyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundriyal, P., Bhattacharya, S. (2018). Inkjet-Printed Sensors on Flexible Substrates. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7751-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7750-0

  • Online ISBN: 978-981-10-7751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics