Skip to main content

Polymeric-Patterned Surface for Biomedical Applications

  • Chapter
  • First Online:
Environmental, Chemical and Medical Sensors

Abstract

Polymeric-patterned surfaces are finding significant importance in various biomedical applications such as screening and diagnostic assays, tissue engineering, biosensors, and in the study of fundamental cell biology. A wide variety of methods, involving photolithography, inkjet printing, soft lithography, and dip-pen lithography, have emerged for protein or polymer patterning on various substrates. For directional immobilization or adsorption of protein, surface requires pre-defined regions to which protein molecules can be immobilized. The most common techniques to introduce defined protein immobilization are soft lithography and photolithography. However, these techniques have some associated limitations. In soft lithography, stamps with well-defined structures are required, and the migration of ink during and after printing needs to be well controlled. In photolithography, a polymeric photoresist and a mask are needed which require expensive setup to fabricate. Therefore, facile and economic techniques are worth exploring. The dewetting of a thin polymeric film is a spontaneous and self-organized process that forms an array of microscale and nanoscale droplets on a substrate. This is a facile approach of patterning polymer on glass substrate providing a reliable surface for specific, dense, and uniform immobilization of desired molecules to pre-designed patterns. Since antibody orientation is very important in antibody-based surface capture assays, patterned polymer surfaces are of great importance with respect to an increasing number of biosensor applications. Apart from protein patterning, such polymeric-patterned surface can be effectively used in specific type of cell isolation and detection. Indeed, it is found that circulating tumor cells (CTCs) are easily isolated using such patterned structures either on a flat plate or inside a microfluidic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    Article  Google Scholar 

  • Bai H-J, Shao M-L, Gou H-L, Xu J-J, Chen H-Y (2009) Patterned Au/poly (dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning. Langmuir 25(17):10402–10407

    Article  Google Scholar 

  • Balasubramanian S, Kagan D, Jack Hu CM, Campuzano S, Lobo-Castañon MJ, Lim N, Kang DY, Zimmerman M, Zhang L, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50(18):4161–4164

    Article  Google Scholar 

  • Bates AK, Rothschild M, Bloomstein TM, Fedynyshyn TH, Kunz RR, Liberman V, Switkes M (2001) Review of technology for 157-nm lithography. IBM J Res Dev 45(5):605–614

    Article  Google Scholar 

  • Benoit DS, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7(10):816–823

    Article  Google Scholar 

  • Bietsch A, Michel B (2000) Conformal contact and pattern stability of stamps used for soft lithography. J Appl Phys 88(7):4310–4318

    Article  Google Scholar 

  • Black CT, Ruiz R, Breyta G, Cheng JY, Colburn ME, Guarini KW, Kim H-C, Zhang Y (2007) Polymer self assembly in semiconductor microelectronics. IBM J Res Dev 51(5):605–633

    Article  Google Scholar 

  • Blažek D, Celer V (2003) The production and application of single-chain antibody fragments. Folia Microbiol 48(5):687–698

    Article  Google Scholar 

  • Borteh HM, Ferrell NJ, Butler RT, Olesik SV, Hansford DJ (2011) Peptide-induced patterning of gold nanoparticle thin films. Appl Surf Sci 258(1):230–235

    Article  Google Scholar 

  • Büssow K, Konthur Z, Lueking A, Lehrach H, Walter G (2001) Protein array technology. Am J Pharmacogenomics 1(1):37–43

    Article  Google Scholar 

  • Cai Y (2009) Simple alternative patterning techniques for selective protein adsorption. University of Akron, Akron

    Google Scholar 

  • Cai Y, Newby B-mZ (2008) Dewetting of polystyrene thin films on poly (ethylene glycol)-modified surfaces as a simple approach for patterning proteins. Langmuir 24(10):5202–5208

    Article  Google Scholar 

  • Caiazzo RJ, Maher AJ, Drummond MP, Lander CI, Tassinari OW, Nelson BP, Liu BCS (2009) Protein microarrays as an application for disease biomarkers. PROTEOMICS-Clin Appl 3(2):138–147

    Article  Google Scholar 

  • Campbell M, Sharp D, Harrison M, Denning R, Turberfield A (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404(6773):53–56

    Article  Google Scholar 

  • Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92(8):2964–2974

    Article  Google Scholar 

  • Cavalcanti-Adam EA, Aydin D, Hirschfeld-Warneken VC, Spatz JP (2008) Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J 2(5):276–285

    Article  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  Google Scholar 

  • Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33(11):1059–1087

    Article  Google Scholar 

  • Chen L, Liu X, Su B, Li J, Jiang L, Han D, Wang S (2011) Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv Mater 23(38):4376–4380

    Article  Google Scholar 

  • Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  Google Scholar 

  • Curtis A, Varde M (1964) Control of cell behavior: topological factors 2. J Natl Cancer Inst 33(1):15–26

    Google Scholar 

  • Danila DC, Pantel K, Fleisher M, Scher HI (2011) Circulating tumors cells as biomarkers: progress toward biomarker qualification. Cancer J (Sudbury, Mass) 17(6):438

    Google Scholar 

  • Deng G, Herrler M, Burgess D, Manna E, Krag D, Burke JF (2008) Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res 10(4):R69

    Article  Google Scholar 

  • Dou X-Q, Zhang D, Feng C, Jiang L (2015) Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano 9(11):10664–10672

    Article  Google Scholar 

  • Dou X, Li P, Jiang S, Bayat H, Schönherr H (2017) Bioinspired hierarchically structured surfaces for efficient capture and release of circulating tumor cells. ACS Appl Mater Interfaces 9(10):8508–8518

    Article  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  • Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995):767–773

    Google Scholar 

  • Galanzha EI, Shashkov EV, Kelly T, Kim J-W, Yang L, Zharov VP (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4(12):855–860

    Article  Google Scholar 

  • Gentili D, Foschi G, Valle F, Cavallini M, Biscarini F (2012) Applications of dewetting in micro and nanotechnology. Chem Soc Rev 41(12):4430–4443

    Article  Google Scholar 

  • Geoghegan M, Krausch G (2003) Wetting at polymer surfaces and interfaces. Prog Polym Sci 28(2):261–302

    Article  Google Scholar 

  • Ghezzi M (2015) Functional surface micropatterns by dewetting of thin polymer films, Ph.D Thesis, School of Chemistry, University of Sydney

    Google Scholar 

  • Ghezzi M, Thickett SC, Telford AM, Easton CD, Meagher L, Neto C (2014) Protein micropatterns by PEG grafting on dewetted PLGA films. Langmuir 30(39):11714–11722

    Article  Google Scholar 

  • Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394. https://doi.org/10.1038/nature21005

    Article  Google Scholar 

  • Han W, Allio BA, Foster DG, King MR (2009) Nanoparticle coatings for enhanced capture of flowing cells in microtubes. ACS Nano 4(1):174–180

    Article  Google Scholar 

  • Harrison RG (1911) On the stereotropism of embryonic cells. Science 34(870):279–281

    Article  Google Scholar 

  • Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393(5):1407–1416

    Article  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  Google Scholar 

  • Hsiao YS, Luo SC, Hou S, Zhu B, Sekine J, Kuo CW, Chueh DY, Yu Hh, Tseng HR, Chen P (2014) 3D Bioelectronic interface: capturing circulating tumor cells onto conducting polymer-based micro/nanorod arrays with chemical and topographical control. Small 10(15):3012–3017

    Article  Google Scholar 

  • Ishizaki T, Saito N, Takai O (2010) Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry. Langmuir 26(11):8147–8154

    Article  Google Scholar 

  • Ito T, Okazaki S (2000) Pushing the limits of lithography. Nature 406(6799):1027–1031

    Article  Google Scholar 

  • Jacobs K, Herminghaus S, Mecke KR (1998) Thin liquid polymer films rupture via defects. Langmuir 14(4):965–969

    Article  Google Scholar 

  • Jaiswal N (2017) Development and functionalization of polymeric patterned surface for biomedical applications, MTech Thesis, National Institute of Technology Durgapur (India)

    Google Scholar 

  • Kane R, Cohen R, Silbey R (1996) Synthesis of PbS nanoclusters within block copolymer nanoreactors. Chem Mater 8(8):1919–1924

    Article  Google Scholar 

  • Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20(23):2363–2376

    Article  Google Scholar 

  • Karthaus O, Gråsjö L, Maruyama N, Shimomura M (1999) Formation of ordered mesoscopic polymer arrays by dewetting. Chaos Interdisc J Nonlinear Sci 9(2):308–314

    Article  Google Scholar 

  • Lau K, Bang J, Kim DH, Knoll W (2008) Self-assembly of protein nanoarrays on block copolymer templates. Adv Funct Mater 18(20):3148–3157

    Article  Google Scholar 

  • Lee N-K, Vilgis TA (2003) Preferential adsorption of hydrophobic-polar model proteins on patterned surfaces. Phys Rev E 67(5):050901

    Article  Google Scholar 

  • Lee K-B, Park S-J, Mirkin CA, Smith JC, Mrksich M (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560):1702–1705

    Google Scholar 

  • Lee SW, Oh BK, Sanedrin RG, Salaita K, Fujigaya T, Mirkin CA (2006) Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv Mater 18(9):1133–1136

    Article  Google Scholar 

  • Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151):338

    Article  Google Scholar 

  • Liu X, Chen L, Liu H, Yang G, Zhang P, Han D, Wang S, Jiang L (2013) Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Mater 5(9):e63

    Article  Google Scholar 

  • Loeffler F, Schirwitz C, Wagner J, Koenig K, Maerkle F, Torralba G, Hausmann M, Bischoff FR, Nesterov-Mueller A, Breitling F (2012) Biomolecule arrays using functional combinatorial particle patterning on microchips. Adv Func Mater 22(12):2503–2508

    Article  Google Scholar 

  • Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217

    Article  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454

    Article  Google Scholar 

  • McAlear JH, Wehrung JM (1978) Microsubstrates and method for making micropattern devices. Google Patents

    Google Scholar 

  • Mehrvar M, Mustafe A (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20(8):1113–1126

    Article  Google Scholar 

  • Meng J, Liu H, Liu X, Yang G, Zhang P, Wang S, Jiang L (2014) Hierarchical biointerfaces assembled by leukocyte-inspired particles for specifically recognizing cancer cells. Small 10(18):3735–3741

    Article  Google Scholar 

  • Mi Y, Li K, Liu Y, Pu K-Y, Liu B, Feng S-S (2011) Herceptin functionalized polyhedral oligomeric silsesquioxane–conjugated oligomers–silica/iron oxide nanoparticles for tumor cell sorting and detection. Biomaterials 32(32):8226–8233

    Article  Google Scholar 

  • Momburg F, Moldenhauer G, Hämmerling GJ, Möller P (1987) Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Can Res 47(11):2883–2891

    Google Scholar 

  • Mostert B, Sleijfer S, Foekens JA, Gratama JW (2009) Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev 35(5):463–474

    Article  Google Scholar 

  • Mukherjee R, Das S, Das A, Sharma SK, Raychaudhuri AK, Sharma A (2010) Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics. ACS Nano 4(7):3709–3724

    Article  Google Scholar 

  • Müller UR, Nicolau DV (2005) Microarray technology and its applications. Springer

    Google Scholar 

  • Myung JH, Gajjar KA, Saric J, Eddington DT, Hong S (2011) Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angew Chem Int Ed 50(49):11769–11772

    Article  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Article  Google Scholar 

  • Nelson CM, VanDuijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314(5797):298–300

    Article  Google Scholar 

  • Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276(5317):1401–1404

    Article  Google Scholar 

  • Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253(2):180–204

    Article  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283(5402):661–663

    Google Scholar 

  • Poliness AE, Healey MG, Brennecke SP, Moses EK (2004) Proteomic approaches in endometriosis research. Proteomics 4(7):1897–1902

    Article  Google Scholar 

  • Rechendorff K, Hovgaard MB, Foss M, Zhdanov V, Besenbacher F (2006) Enhancement of protein adsorption induced by surface roughness. Langmuir 22(26):10885–10888

    Article  Google Scholar 

  • Redon C, Brochard-Wyart F, Rondelez F (1991) Dynamics of dewetting. Phys Rev Lett 66(6):715

    Article  Google Scholar 

  • Reiter G (1992) Dewetting of thin polymer films. Phys Rev Lett 68(1):75

    Article  MathSciNet  Google Scholar 

  • Reiter G, Hamieh M, Damman P, Sclavons S, Gabriele S, Vilmin T, Raphaël E (2005) Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat Mater 4(10):754–758

    Article  Google Scholar 

  • Riepl M, Östblom M, Lundström I, Svensson SC, Denier van der Gon AW, Schäferling M, Liedberg B (2005) Molecular gradients: an efficient approach for optimizing the surface properties of biomaterials and biochips. Langmuir 21(3):1042–1050

    Article  Google Scholar 

  • Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 13(3):920–928

    Article  Google Scholar 

  • Riethdorf S, Müller V, Zhang L, Rau T, Loibl S, Komor M, Roller M, Huober J, Fehm T, Schrader I (2010) Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 16(9):2634–2645

    Article  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors. J Cell Biol 153(6):1175–1186

    Article  Google Scholar 

  • Rosales AM, Anseth KS (2016) The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 1:15012

    Article  Google Scholar 

  • Saerens D, Ghassabeh GH, Muyldermans S (2008) Antibody technology in proteomics. Briefings Funct Genomics Proteomics 7(4):275–282

    Article  Google Scholar 

  • Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H (2009) Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 35(1):16–35

    Article  Google Scholar 

  • Schena M (2005) Protein microarrays. Jones & Bartlett Learning

    Google Scholar 

  • Schramm W, Paek S-H, Voss G (1993) Strategies for the immobilization of antibodies. Immunomethods 3(2):93–103

    Article  Google Scholar 

  • Seemann R, Herminghaus S, Jacobs K (2001a) Gaining control of pattern formation of dewetting liquid films. J Phys: Condens Matter 13(21):4925

    Google Scholar 

  • Seemann R, Jacobs K, Blossey R (2001b) Polystyrene nanodroplets. J Phys: Condens Matter 13(21):4915

    Google Scholar 

  • Seemann R, Brinkmann M, Kramer EJ, Lange FF, Lipowsky R (2005a) Wetting morphologies at microstructured surfaces. Proc Natl Acad Sci USA 102(6):1848–1852

    Article  Google Scholar 

  • Seemann R, Herminghaus S, Neto C, Schlagowski S, Podzimek D, Konrad R, Mantz H, Jacobs K (2005b) Dynamics and structure formation in thin polymer melt films. J Phys: Condens Matter 17(9):S267

    Google Scholar 

  • Sharma A, Reiter G (1996) Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation. J Colloid Interface Sci 178(2):383–399

    Article  Google Scholar 

  • Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet printing of light-emitting polymer displays. MRS Bull 28(11):821–827

    Article  Google Scholar 

  • Singh TB, Sariciftci NS (2006) Progress in plastic electronics devices. Annu Rev Mater Res 36:199–230

    Article  Google Scholar 

  • Sirringhaus H, Kawase T, Friend R, Shimoda T, Inbasekaran M, Wu W, Woo E (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499):2123–2126

    Google Scholar 

  • Stoll D, Bachmann J, Templin MF, Joos TO (2004) Microarray technology: an increasing variety of screening tools for proteomic research. Drug Discovery Today: TARGETS 3(1):24–31

    Article  Google Scholar 

  • Suh KY, Seong J, Khademhosseini A, Laibinis PE, Langer R (2004) A simple soft lithographic route to fabrication of poly (ethylene glycol) microstructures for protein and cell patterning. Biomaterials 25(3):557–563

    Article  Google Scholar 

  • Telford A, Meagher L, Glattauer V, Gengenbach T, Easton C, Neto C (2012) Micropatterning of polymer brushes: grafting from dewetting polymer films for biological applications. Biomacromol 13(9):2989–2996

    Article  Google Scholar 

  • Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita J-B, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7(10):947–953

    Article  Google Scholar 

  • Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita J-B, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci 103(52):19771–19776

    Article  Google Scholar 

  • Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432(7020):1050–1054

    Article  Google Scholar 

  • Valkama S, Kosonen H, Ruokolainen J, Haatainen T, Torkkeli M, Serimaa R, ten Brinke G, Ikkala O (2004) Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nat Mater 3(12):872–876

    Article  Google Scholar 

  • Valsesia A, Colpo P, Manso Silvan M, Meziani T, Ceccone G, Rossi F (2004) Fabrication of nanostructured polymeric surfaces for biosensing devices. Nano Lett 4(6):1047–1050

    Article  Google Scholar 

  • Valsesia A, Colpo P, Meziani T, Bretagnol F, Lejeune M, Rossi F, Bouma A, Garcia-Parajo M (2006) Selective immobilization of protein clusters on polymeric nanocraters. Adv Func Mater 16(9):1242–1246

    Article  Google Scholar 

  • Valsesia A, Colpo P, Mannelli I, Mornet S, Bretagnol F, Ceccone G, Rossi F (2008) Use of nanopatterned surfaces to enhance immunoreaction efficiency. Anal Chem 80(5):1418–1424

    Article  Google Scholar 

  • van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JM (2011) Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res 71(18):5955–5960

    Article  Google Scholar 

  • Wagner P, Kim R (2002) Protein biochips: an emerging tool for proteomics research. Curr Drug Discov 23–28

    Google Scholar 

  • Wan Y, Winter M, Delalat B, Hardingham JE, Grover PK, Wrin J, Voelcker NH, Price TJ, Thierry B (2014) Nanostructured polystyrene well plates allow unbiased high-throughput characterization of circulating tumor cells. ACS Appl Mater Interfaces 6(23):20828–20836

    Article  Google Scholar 

  • Wang L, Asghar W, Demirci U, Wan Y (2013) Nanostructured substrates for isolation of circulating tumor cells. Nano Today 8(4):374–387

    Article  Google Scholar 

  • Weiss P, Garber B (1952) Shape and movement of mesenchyme cells as functions of the physical structure of the medium contributions to a quantitative morphology. Proc Natl Acad Sci 38(3):264–280

    Article  Google Scholar 

  • Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39(7):1180–1218

    Article  Google Scholar 

  • Wyart FB, Martin P, Redon C (1993) Liquid/liquid dewetting. Langmuir 9(12):3682–3690

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184

    Article  Google Scholar 

  • Xu H, Aguilar ZP, Yang L, Kuang M, Duan H, Xiong Y, Wei H, Wang A (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32(36):9758–9765

    Article  Google Scholar 

  • Yan S, Zhang X, Dai X, Feng X, Du W, Liu B-F (2016) Rhipsalis (Cactaceae)-like hierarchical structure based microfluidic chip for highly efficient isolation of rare cancer cells. ACS Appl Mater Interfaces 8(49):33457–33463

    Article  Google Scholar 

  • Yap FL, Zhang Y (2005) Protein micropatterning using surfaces modified by self-assembled polystyrene microspheres. Langmuir 21(12):5233–5236

    Article  Google Scholar 

  • Yap F, Zhang Y (2007) Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens Bioelectron 22(6):775–788

    Article  Google Scholar 

  • Ye C, Nikolov SV, Calabrese R, Dindar A, Alexeev A, Kippelen B, Kaplan DL, Tsukruk VV (2015) Self-(Un) rolling biopolymer microstructures: rings, tubules, and helical tubules from the same material. Angew Chem 127(29):8610–8613

    Article  Google Scholar 

  • Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382

    Article  Google Scholar 

  • Zeiger AS, Hinton B, Van Vliet KJ (2013) Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces. Acta Biomater 9(7):7354–7361

    Article  Google Scholar 

  • Zhang P, Chen L, Xu T, Liu H, Liu X, Meng J, Yang G, Jiang L, Wang S (2013) Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv Mater 25(26):3566–3570

    Article  Google Scholar 

  • Zheng S, Lin HK, Lu B, Williams A, Datar R, Cote RJ, Tai Y-C (2011) 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevice 13(1):203–213

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Director, CSIR-CMERI, Durgapur, for the support and encouragement. Support from CSIR 12th FYP project no. ESC0112 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhiram Hens or Nripen Chanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaiswal, N., Hens, A., Chatterjee, M., Mahata, N., Nagahanumaiah, Chanda, N. (2018). Polymeric-Patterned Surface for Biomedical Applications. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7751-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7750-0

  • Online ISBN: 978-981-10-7751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics