Skip to main content

Homocysteine: Discovery and Metabolism

  • Chapter
  • First Online:
The Clinical Application of Homocysteine
  • 376 Accesses

Abstract

Homocysteine is an intermediate product in the metabolism of the essential amino acid methionine. Homocysteine is either remethylated to yield methionine or is further metabolized to cysteine and α-ketoglutarate which are both diverted to protein synthesis. These two metabolic processes – remethylation and transsulfuration pathways – are dependent on several enzymes and co-factors. The remethylation cycle is dependent on the rate-limiting enzyme methylene tetrahydrofolate reductase (MTHFR) and the B group vitamins folate and B12. The transsulfuration pathway is likewise dependent on cystathionine-β -synthase and pyridoxine. Thus, any alterations in the functions of these enzymes (due to polymorphisms of their genes) or a deficiency of any of these three vitamins of the B group (folate, B12 and pyridoxine) will result in reduced metabolism of homocysteine and its consequent accumulation. Homocysteine causes altered redox potential as well as modification of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vincent du Vigneaud was awarded the Nobel Prize in 1955 for his work on sulphur-containing compounds.

References

  • Alessio AC, Siqueira LH, Bydlowski SP, Hoehr NF, Annichino-Bizzacchi JM. Polymorphisms in CBS gene and homocysteine, folate and B12 levels: association of polymorphism in MTHFR and MTRR genes in Brazilian children. Am J Med Genet A. 2008;146A(20):2598–602.

    Article  CAS  Google Scholar 

  • Bhargava S, Ali A, Bhargava EK, Manocha A, Kankra M, Das S, Srivastava LM. Lowering homocysteine and modifying nutritional status with folic acid and vitamin B12 in Indian patients of vascular disease. J Clin Biochem Nutr. 2012a;50(3):222–6.

    Article  CAS  Google Scholar 

  • Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease, probable benefits of folic acid intake. JAMA. 1995;274(13):1049–57.

    Article  CAS  Google Scholar 

  • Carson NAJ, Neill DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch Dis Child. 1962;37:505–13.

    Article  CAS  Google Scholar 

  • De Vigneaud VE. (1952) Trail of Research in Sulfur Chemistry and Metabolism, and Related Fields. Ithaca, Cornell University Press.

    Google Scholar 

  • Gellekink H, den Heijer M, Heil SG, Blom HJ. Genetic determinants of plasma homocysteine. Semin Vasc Med. 2005;5(2):98–109.

    Article  Google Scholar 

  • Gerritsen T, Waisman HA. Homocysteinuria, an error of metabolism in methionine. Paediatrics. 1964;33:413–20.

    CAS  Google Scholar 

  • Goyette P, Pai A, Milos R, Frosst P, Tran P, Chen Z, Chan M, Rozen R. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome. 1998;9(8):652–6.

    Article  CAS  Google Scholar 

  • Hayden MR, Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J. 2004;3:4–27.

    Article  Google Scholar 

  • Kumar J, Das SK, Sharma P, Karthikeyan G, Ramakrishnan L, Sengupta S. Homocysteine levels are associated with MTHFR A1298C polymorphism in Indian population. J Hum Genet. 2005;5:655–63.

    Article  Google Scholar 

  • Malinow MR, Kang SS, Taylor LM, Wong PW, Coull B, Inahara T, Mukerjee D, Sexton G, Upson B. Prevalence of homocysteinemia in patients with peripheral arterial occlusive disease. Circulation. 1989;79(6):1180–8.

    Article  CAS  Google Scholar 

  • Malinow MR, Ducimetiere P, Luc G, Evans AE, Arveiler D, Cambien F, Upson BM. Plasma homocysteine levels and graded risk for myocardial infarction: findings in two populations at contrasting risk for coronary heart disease. Atherosclerosis. 1996;126:27–34.

    Article  CAS  Google Scholar 

  • McCully KS. Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature. 1971;231(5302):591–2.

    Article  Google Scholar 

  • McCully KS, Ragsdale BD. Production of arteriosclerosis by homocysteinemia. Amer J Path. 1970;61:1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimen. Metabolism. 1975;24(6):721–35.

    Article  CAS  Google Scholar 

  • Münke M, Kraus JP, Ohura T, Francke U. The gene of cystathionine-beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am J Hum Genet. 1988;42(4):550–9.

    PubMed  PubMed Central  Google Scholar 

  • Radha Rama Devi A, Govidaiah V, Ramakrishna G, Naushad SM. Prevalence of methylene tetrahydrofolate reductase polymorphism in South Indian population. Current Science 2004; 86(3):440-443.

    Google Scholar 

  • Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46.

    Article  CAS  Google Scholar 

  • Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK, Budy B, Ketterer ME, Jacobsen DW. Albumin thiolate anion is an intermediate in the formation of albumin-S–S-homocysteine. J Biol Chem. 2001;276:30111–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhargava, S. (2018). Homocysteine: Discovery and Metabolism. In: The Clinical Application of Homocysteine. Springer, Singapore. https://doi.org/10.1007/978-981-10-7632-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7632-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7631-2

  • Online ISBN: 978-981-10-7632-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics