Skip to main content

Mannuronic Acid as an Anti-inflammatory Drug

  • Chapter
  • First Online:
Alginates and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 11))

Abstract

Alginic acid is a linear polymer forming of β-D-mannuronic acid and α-L-guluronic acid residues that are present in the polymer chain in blocks. The D-mannuronic acid represents a newly designed nonsteroidal anti-inflammatory drug (NSAID) that has also immunosuppressive effects together with antioxidant property. D-mannuronic acid has been studied as an anti-inflammatory and novel immunosuppressive agent in several experimental models such as animal models of immune complex glomerulonephritis, nephrotic syndrome, multiple sclerosis, and rheumatoid arthritis. Both molecular mechanism and therapeutic efficacy of this new drug are based, in particular, on its inhibitory effects on matrix metalloproteinase-2 activity, immune cell infiltration in inflammatory foci, decrease of inflammatory cytokine IL-6 level, a reduction in antibody production, and induction of apoptosis. Several literature data reported no gastro-nephrotoxicity and therapeutic effects in several inflammatory diseases; for this reason it is strongly recommended as the safest drug for decreasing anti-inflammatory reactions. Moreover, recently many clinical trials were performed; results obtained support the idea that D-mannuronic acid is characterized by potent anti-inflammatory and immunosuppressive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6(6):637–650. https://doi.org/10.1111/1751-7915.12076

    Google Scholar 

  2. Fabich HT, Vogt SJ, Sherick ML, Seymour JD, Brown JR, Franklin MJ, Codd SL (2012) Microbial and algal alginate gelation characterized by magnetic resonance. J Biotechnol 161(3):320–327. https://doi.org/10.1016/j.jbiotec.2012.04.016

    Article  Google Scholar 

  3. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  Google Scholar 

  4. Kaushik AY, Tiwari AK, Gaur A (2015) Role of excipients and polymeric advancements in preparation of floating drug delivery systems. International journal of pharmaceutical investigation 5(1):1–12. https://doi.org/10.4103/2230-973X.147219

    Article  Google Scholar 

  5. Barati A, Jamshidi AR, Ahmadi H, Aghazadeh Z, Mirshafiey A (2017) Effects of beta-d-mannuronic acid, as a novel non-steroidal anti-inflammatory medication within immunosuppressive properties, on IL17, RORgammat, IL4 and GATA3 gene expressions in rheumatoid arthritis patients. Drug Des Devel Ther 11:1027–1033. https://doi.org/10.2147/DDDT.S129419

    Article  Google Scholar 

  6. Rehm BH, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48(3):281–288

    Article  Google Scholar 

  7. Skjak-Braek G, Grasdalen H, Larsen B (1986) Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res 154:239–250

    Article  Google Scholar 

  8. Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13(6):3340–3359. https://doi.org/10.3390/md13063340

    Article  Google Scholar 

  9. Sidiropoulos PI, Hatemi G, Song IH, Avouac J, Collantes E, Hamuryudan V, Herold M, Kvien TK, Mielants H, Mendoza JM, Olivieri I, Ostergaard M, Schachna L, Sieper J, Boumpas DT, Dougados M (2008) Evidence-based recommendations for the management of ankylosing spondylitis: systematic literature search of the 3E Initiative in Rheumatology involving a broad panel of experts and practising rheumatologists. Rheumatology 47(3):355–361. https://doi.org/10.1093/rheumatology/kem348

    Article  Google Scholar 

  10. Fattahi MJ, Abdollahi M, Agha Mohammadi A, Rastkari N, Khorasani R, Ahmadi H, Tofighi Zavareh F, Sedaghat R, Tabrizian N, Mirshafiey A (2015) Preclinical assessment of beta-d-mannuronic acid (M2000) as a non-steroidal anti-inflammatory drug. Immunopharmacol Immunotoxicol 37(6):535–540. https://doi.org/10.3109/08923973.2015.1113296

    Article  Google Scholar 

  11. Mirshafiey A, Rehm B, Sotoude M, Razavi A, Abhari RS, Borzooy Z (2007) Therapeutic approach by a novel designed anti-inflammatory drug, M2000, in experimental immune complex glomerulonephritis. Immunopharmacol Immunotoxicol 29(1):49–61. https://doi.org/10.1080/08923970701282387

    Article  Google Scholar 

  12. Lodish HF, Zhou B, Liu G, Chen CZ (2008) Micromanagement of the immune system by microRNAs. Nat Rev Immunol 8(2):120–130. https://doi.org/10.1038/nri2252

    Article  Google Scholar 

  13. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  Google Scholar 

  14. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  Google Scholar 

  15. Martinelli-Boneschi F, Fenoglio C, Brambilla P, Sorosina M, Giacalone G, Esposito F, Serpente M, Cantoni C, Ridolfi E, Rodegher M, Moiola L, Colombo B, De Riz M, Martinelli V, Scarpini E, Comi G, Galimberti D (2012) MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett 508(1):4–8. https://doi.org/10.1016/j.neulet.2011.11.006

    Article  Google Scholar 

  16. Dai R, Ahmed SA (2011) MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res J Lab Clin Med 157(4):163–179. https://doi.org/10.1016/j.trsl.2011.01.007

    Article  Google Scholar 

  17. Tufekci KU, Oner MG, Genc S, Genc K (2010) MicroRNAs and multiple sclerosis. Autoimmun Dis 2011:807426. https://doi.org/10.4061/2011/807426

    Google Scholar 

  18. Lofgren SE, Frostegard J, Truedsson L, Pons-Estel BA, D’Alfonso S, Witte T, Lauwerys BR, Endreffy E, Kovacs L, Vasconcelos C, Martins da Silva B, Kozyrev SV, Alarcon-Riquelme ME (2012) Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun 13(3):268–274. https://doi.org/10.1038/gene.2011.84

    Article  Google Scholar 

  19. Nahid MA, Pauley KM, Satoh M, Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: Implication in innate immunity. J Biol Chem 284(50):34590–34599. https://doi.org/10.1074/jbc.M109.056317

    Article  Google Scholar 

  20. Nahid MA, Satoh M, Chan EK (2011) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186(3):1723–1734. https://doi.org/10.4049/jimmunol.1002311

    Article  Google Scholar 

  21. Rom S, Rom I, Passiatore G, Pacifici M, Radhakrishnan S, Del Valle L, Pina-Oviedo S, Khalili K, Eletto D, Peruzzi F (2010) CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 24(7):2292–2300. https://doi.org/10.1096/fj.09-143503

    Article  Google Scholar 

  22. Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, Franceschini D, Meloni F, Barnaba V, Macino G (2010) An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115(2):265–273. https://doi.org/10.1182/blood-2009-06-225987

    Article  Google Scholar 

  23. Atarod S, Ahmed MM, Lendrem C, Pearce KF, Cope W, Norden J, Wang XN, Collin M, Dickinson AM (2016) miR-146a and miR-155 expression levels in acute graft-versus-host disease incidence. Front Immunol 7:56. https://doi.org/10.3389/fimmu.2016.00056

    Article  Google Scholar 

  24. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10(4):R101. https://doi.org/10.1186/ar2493

    Article  Google Scholar 

  25. Sonkoly E, Stahle M, Pivarcsi A (2008) MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol 33(3):312–315. https://doi.org/10.1111/j.1365-2230.2008.02804.x

    Article  Google Scholar 

  26. Jensen LE, Muzio M, Mantovani A, Whitehead AS (2000) IL-1 signaling cascade in liver cells and the involvement of a soluble form of the IL-1 receptor accessory protein. J Immunol 164(10):5277–5286

    Article  Google Scholar 

  27. Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418(6896):443–447. https://doi.org/10.1038/nature00888

    Article  Google Scholar 

  28. Rehm BH (1998) Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiol Lett 165(1):175–180

    Article  Google Scholar 

  29. Jackson CJ, Nguyen M (1997) Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell Biol 29(10):1167–1177

    Article  Google Scholar 

  30. Mirshafiey A, Rehm B, Abhari RS, Borzooy Z, Sotoude M, Razavi A (2007) Production of M2000 (beta-d-mannuronic acid) and its therapeutic effect on experimental nephritis. Environ Toxicol Pharmacol 24(1):60–66. https://doi.org/10.1016/j.etap.2007.02.002

    Article  Google Scholar 

  31. Saba R, Sorensen DL, Booth SA (2014) MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 5:578. https://doi.org/10.3389/fimmu.2014.00578

    Article  Google Scholar 

  32. Sabroe I, Parker LC, Dower SK, Whyte MK (2008) The role of TLR activation in inflammation. J Pathol 214(2):126–135. https://doi.org/10.1002/path.2264

    Article  Google Scholar 

  33. O’Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312. https://doi.org/10.1146/annurev-immunol-020711-075013

    Article  Google Scholar 

  34. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58(4):1001–1009. https://doi.org/10.1002/art.23386

    Article  Google Scholar 

  35. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075. https://doi.org/10.1002/art.24436

    Article  Google Scholar 

  36. Maitra U, Davis S, Reilly CM, Li L (2009) Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol 182(9):5763–5769. https://doi.org/10.4049/jimmunol.0900124

    Article  Google Scholar 

  37. Deng C, Radu C, Diab A, Tsen MF, Hussain R, Cowdery JS, Racke MK, Thomas JA (2003) IL-1 receptor-associated kinase 1 regulates susceptibility to organ-specific autoimmunity. J Immunol 170(6):2833–2842

    Article  Google Scholar 

  38. Wu H, Arron JR (2003) TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. BioEssays 25(11):1096–1105. https://doi.org/10.1002/bies.10352

    Article  Google Scholar 

  39. Mirshafiey A, Matsuo H, Nakane S, Rehm BH, Koh CS, Miyoshi S (2005) Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol Immunotoxicol 27(2):255–265. https://doi.org/10.1081/IPH-200067751

    Article  Google Scholar 

  40. Mirshafiey A, Cuzzocrea S, Rehm B, Mazzon E, Saadat F, Sotoude M (2005) Treatment of experimental arthritis with M2000, a novel designed non-steroidal anti-inflammatory drug. Scand J Immunol 61(5):435–441. https://doi.org/10.1111/j.1365-3083.2005.01594.x

    Article  Google Scholar 

  41. Mirshafiey A, Cuzzocrea S, Rehm BH, Matsuo H (2005) M2000: a revolution in pharmacology. Med Sci Monit Int Med J Exp Clin Res 11(8):PI53–PI63

    Google Scholar 

  42. Pourgholi F, Hajivalili M, Razavi R, Esmaeili S, Baradaran B, Movasaghpour AA, Sadreddini S, Goodarzynejad H, Mirshafiey A, Yousefi M (2017) The role of M2000 as an anti-inflammatory agent in toll-like receptor 2/microRNA-155 pathway. Avicenna J Med Biotechnol 9(1):8–12

    Google Scholar 

  43. Aletaha S, Haddad L, Roozbehkia M, Bigdeli R, Asgary V, Mahmoudi M, Mirshafiey A (2017) M2000 (beta-D-Mannuronic Acid) as a novel antagonist for blocking the TLR2 and TLR4 downstream signalling pathway. Scand J Immunol 85(2):122–129. https://doi.org/10.1111/sji.12519

    Article  Google Scholar 

  44. O’Callaghan CA (2004) Renal manifestations of systemic autoimmune disease: diagnosis and therapy. Best Pract Res Clin Rheumatol 18(3):411–427. https://doi.org/10.1016/j.berh.2004.03.002

    Article  Google Scholar 

  45. Fogo AB (2003) Quiz page. Acute interstitial nephritis and minimal change disease lesion, caused by NSAID injury. Am J Kidney Dis 42(2):A41–E41

    Article  Google Scholar 

  46. Reinhold SW, Fischereder M, Riegger GA, Kramer BK (2003) Acute renal failure after administration of a single dose of a highly selective COX-2 inhibitor. Clin Nephrol 60(4):295–296

    Article  Google Scholar 

  47. Basivireddy J, Jacob M, Pulimood AB, Balasubramanian KA (2004) Indomethacin-induced renal damage: role of oxygen free radicals. Biochem Pharmacol 67(3):587–599. https://doi.org/10.1016/j.bcp.2003.09.023

    Article  Google Scholar 

  48. Stollberger C, Finsterer J (2004) Side effects of conventional nonsteroidal anti-inflammatory drugs and celecoxib: more similarities than differences. South Med J 97(2):209. https://doi.org/10.1097/01.SMJ.0000093569.26036.27

    Article  Google Scholar 

  49. Perazella MA (2003) Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci 325(6):349–362

    Article  Google Scholar 

  50. Kaiser A (2003) Diclofenac caused renal insufficiency. A case illustrating the necessity of pharmaceutical intervention and care. Med Monatsschr Pharm 26(11):384–388

    Google Scholar 

  51. Lenz O, Elliot SJ, Stetler-Stevenson WG (2000) Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol 11(3):574–581

    Google Scholar 

  52. Chadban S (2001) Glomerulonephritis recurrence in the renal graft. J Am Soc Nephrol 12(2):394–402

    Google Scholar 

  53. Marti HP (2002) The role of matrix metalloproteinases in the activation of mesangial cells. Transpl Immunol 9(2–4):97–100

    Article  Google Scholar 

  54. Lovett DH, Johnson RJ, Marti HP, Martin J, Davies M, Couser WG (1992) Structural characterization of the mesangial cell type IV collagenase and enhanced expression in a model of immune complex-mediated glomerulonephritis. Am J Pathol 141(1):85–98

    Google Scholar 

  55. Harendza S, Schneider A, Helmchen U, Stahl RA (1999) Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol Dial Transplant 14(12):2873–2879

    Article  Google Scholar 

  56. Mirshafiey A, Rehm BH, Sahmani AA, Naji A, Razavi A (2004) M-2000, as a new anti-inflammatory molecule in treatment of experimental nephrosis. Immunopharmacol Immunotoxicol 26(4):611–619. https://doi.org/10.1081/IPH-200042362

    Article  Google Scholar 

  57. Mirshafiey A, Khorramizadeh MR, Saadat F, Rehm BH (2004) Chemopreventive effect of M2000, a new anti-inflammatory agent. Med Sci Monit 10(10):PI105–PI109

    Google Scholar 

  58. Espevik T, Nissen-Meyer J (1986) A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods 95(1):99–105

    Article  Google Scholar 

  59. Firestein GS (1996) Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum 39(11):1781–1790

    Article  Google Scholar 

  60. Cho ML, Kim WU, Min SY, Min DJ, Min JK, Lee SH, Park SH, Cho CS, Kim HY (2002) Cyclosporine differentially regulates interleukin-10, interleukin-15, and tumor necrosis factor a production by rheumatoid synoviocytes. Arthritis Rheum 46(1):42–51. https://doi.org/10.1002/1529-0131(200201)46:1<42::AID-ART10026>3.0.CO;2-A

    Article  Google Scholar 

  61. Bucala R, Ritchlin C, Winchester R, Cerami A (1991) Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J Exp Med 173(3):569–574

    Article  Google Scholar 

  62. Hitchon CA, Danning CL, Illei GG, El-Gabalawy HS, Boumpas DT (2002) Gelatinase expression and activity in the synovium and skin of patients with erosive psoriatic arthritis. J Rheumatol 29(1):107–117

    Google Scholar 

  63. Jackson CJ, Arkell J, Nguyen M (1998) Rheumatoid synovial endothelial cells secrete decreased levels of tissue inhibitor of MMP (TIMP1). Ann Rheum Dis 57(3):158–161

    Article  Google Scholar 

  64. Chernajovsky Y, Adams G, Triantaphyllopoulos K, Ledda MF, Podhajcer OL (1997) Pathogenic lymphoid cells engineered to express TGF beta 1 ameliorate disease in a collagen-induced arthritis model. Gene Ther 4(6):553–559. https://doi.org/10.1038/sj.gt.3300436

    Article  Google Scholar 

  65. Minghetti PP, Blackburn WD Jr (2000) Effects of sulfasalazine and its metabolites on steady state messenger RNA concentrations for inflammatory cytokines, matrix metalloproteinases, and tissue inhibitors of metalloproteinase in rheumatoid synovial fibroblasts. J Rheumatol 27(3):653–660

    Google Scholar 

  66. Gervasi DC, Raz A, Dehem M, Yang M, Kurkinen M, Fridman R (1996) Carbohydrate-mediated regulation of matrix metalloproteinase-2 activation in normal human fibroblasts and fibrosarcoma cells. Biochem Biophys Res Commun 228(2):530–538. https://doi.org/10.1006/bbrc.1996.1694

    Article  Google Scholar 

  67. Laporte JR, Ibanez L, Vidal X, Vendrell L, Leone R (2004) Upper gastrointestinal bleeding associated with the use of NSAIDs: newer versus older agents. Drug Saf 27(6):411–420

    Article  Google Scholar 

  68. Dupas JL, Grigy C (2004) Curative and preventive treatment of NSAID-associated gastroduodenal ulcers. Gastroenterologie clinique et biologique 28 Spec No 3:C77-83

    Google Scholar 

  69. Lazzaroni M, Bianchi Porro G (2004) Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. Aliment Pharmacol Ther 20(Suppl 2):48–58. https://doi.org/10.1111/j.1365-2036.2004.02037.x

    Article  Google Scholar 

  70. Bauerova K, Nosal’ova V, Mihalova D, Navarova J (2004) Contribution to safe anti-inflammatory therapy with indomethacin. Cent Eur J Public Health 12(Suppl):S8–10

    Google Scholar 

  71. Miossec P (2009) IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect 11(5):625–630. https://doi.org/10.1016/j.micinf.2009.04.003

    Article  Google Scholar 

  72. Kehrmann J, Tatura R, Zeschnigk M, Probst-Kepper M, Geffers R, Steinmann J, Buer J (2014) Impact of 5-aza-2′-deoxycytidine and epigallocatechin-3-gallate for induction of human regulatory T cells. Immunology 142(3):384–395. https://doi.org/10.1111/imm.12261

    Article  Google Scholar 

  73. Ratajewski M, Walczak-Drzewiecka A, Salkowska A, Dastych J (2012) Upstream stimulating factors regulate the expression of RORgammaT in human lymphocytes. J Immunol 189(6):3034–3042. https://doi.org/10.4049/jimmunol.1200519

    Article  Google Scholar 

  74. Chiu YH, Chen H (2016) GATA3 inhibits GCM1 activity and trophoblast cell invasion. Sci Rep 6:21630. https://doi.org/10.1038/srep21630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crupi, R., Cuzzocrea, S. (2018). Mannuronic Acid as an Anti-inflammatory Drug. In: Rehm, B., Moradali, M. (eds) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-6910-9_11

Download citation

Publish with us

Policies and ethics