Skip to main content

Nano Elemental Metal Desulfurizers

  • Chapter
  • First Online:
High-Temperature H2S Removal from IGCC Coarse Gas

Part of the book series: Energy and Environment Research in China ((EERC))

  • 305 Accesses

Abstract

It is well known that the support of sorbents plays a crucial role in gas diffusion and sulfidation reaction, and the supports of big specific areas and large pore volumes are beneficial for H2S adsorption [1]. Mesoporous carbon aerogel, a 3-D network structure of interconnected nanosized primary particles, is regarded to be a preferable support. Carbon aerogels have a unique porous structure, including well-developed and controlled interparticle mesopores and intraparticle micropores, huge pore volume, and large specific surface area. Additionally, the carbon aerogels remain stable under high temperature , and they could be formed into various shapes and can be used without any further forming treatment, which makes these materials attractive as the support of the desulfurizer [2,3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, H.L., Sun, T., Zhao, Y.P., Shangguan, J., Lin, J.Y.: Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures. Environ. Sci. Technol. 47(9), 4859–4865 (2013)

    Article  CAS  Google Scholar 

  2. Pekala, R.W., Kong, F.M.: Resorcinol-formaldehyde aerogels and their carbonized derivatives. Abstr. Pap. Am. Chem. Soc. 197(10), 113 (1988)

    Google Scholar 

  3. Wu, D., Fu, R., Sselhaus, M.S., Dresselhaus, G.: Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon 44, 675–681 (2006)

    Article  CAS  Google Scholar 

  4. Al-Muhtaseb, S.A., Ritter, J.A.: Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15(2), 101–114 (2003)

    Article  CAS  Google Scholar 

  5. Berthon, S., Barbieri, O., Ehrburger-Dolle, F.O., Geissler, E., Achard, P., Bley, F.O., Hecht, A.M., Livet, F., Pajonk, G.M., Pinto, N.: DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285, 154–161 (2001)

    Google Scholar 

  6. Wu, J., Yang, S., Liu, Q., He, P., Tian, H., Ren, J., Guan, Z., Hu, T., Ni, B., Zhang, C.: Cu Nanoparticles inlaid mesoporous carbon aerogels as a high performance desulfurizer. Environ. Sci. Technol. 50, 5370–5378 (2016)

    Article  CAS  Google Scholar 

  7. Tian, H., Wu, J., Zhang, W., Yang, S., Li, F., Qi, Y., Zhou, R., Qi, X., Zhao, L., Wang, X.: High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal. Chem. Eng. J. 313, 1051–1060 (2017)

    Article  CAS  Google Scholar 

  8. Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(11), 603–619 (1985)

    CAS  Google Scholar 

  9. Maldonado-Hódar, F.J., Ferro-Garcı́A, M.A., Rivera-Utrilla, J., Moreno-Castilla, C.: Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37, 1199–1205 (1999)

    Article  Google Scholar 

  10. Li, J., Gu, J., Li, H., Liang, Y., Hao, Y., Sun, X., Wang, L.: Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Microporous Mesoporous Mater. 128, 144–149 (2010)

    Article  CAS  Google Scholar 

  11. Zhang, T.M., Zhao, D.L., Yin, L., Shen, Z.M.: Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons. J. Alloy. Compd. 508, 147–151 (2010)

    Article  CAS  Google Scholar 

  12. Song, H., Chen, X., Chen, X., Zhang, S., Li, H.: Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon 41, 3037–3046 (2003)

    Article  CAS  Google Scholar 

  13. Oberlin, A., Rouchy, J.P.: Transformation des carbones non graphitables par traitement thermique en presence de fer. Carbon 9, 39–46 (1971)

    Article  CAS  Google Scholar 

  14. Weisweiler, W., Subramanian, N., Terwiesch, B.: Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon. Carbon 9, 755–758 (1971)

    Article  CAS  Google Scholar 

  15. Kim, J.Y., Rodriguez, J.A., Hanson, J.C., Frenkel, A.I., Lee, P.L.: Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125(35), 10684–10692 (2003)

    Article  CAS  Google Scholar 

  16. Hawn, D.D., DeKoven, B.M.: Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10(2–3), 63–74 (1987)

    Article  CAS  Google Scholar 

  17. Muhler, M., Schlögl, R., Ertl, G.: The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992)

    Article  CAS  Google Scholar 

  18. Rodriguez, J.A., Chaturvedi, S., Kuhn, M., Hrbek, J.: Reaction of H2S and S2 with metal/oxide surfaces: band-gap size and chemical reactivity. J. Phys. Chem. B 102(28), 5511–5519 (1998)

    Article  CAS  Google Scholar 

  19. Liu, D.J., Zhou, W.G., Wu, J.: CeO2–MnO x /ZSM-5 sorbents for H2S removal at high temperature. Chem. Eng. J. 284, 862–871 (2016)

    Article  CAS  Google Scholar 

  20. Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., Lojewski, T., Dziembaj, R., Papp, H.: Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Appl. Catal. B 18(3), 199–213 (1998)

    Article  CAS  Google Scholar 

  21. Bagreev, A., Menendez, J.A., Dukhno, I., Tarasenko, Y., Bandosz, T.J.: Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42(3), 469–476 (2004)

    Article  CAS  Google Scholar 

  22. Shpiro, E.S., Joyner, R.W., Grünert, W., Hayes, N.W., Siddiqui, M.R.H., Baeva, G.N.: Structure, chemistry and activity of well-defined Cu–ZSM-5 catalysts in the selective reduction of NOX. Stud. Surf. Sci. Catal. 1483–1492 (1994)

    Google Scholar 

  23. Espinós, J.P., Morales, J., Barranco, A., Caballero, A., Holgado, J.P., González-Elipe, A.R.: Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 106(27), 6921–6929 (2002)

    Article  Google Scholar 

  24. Yin, A., Guo, X., Dai, W.L., Fan, K.: The nature of active copper species in Cu–HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergetic effect between Cu0 and Cu+. J. Phys. Chem. C 113(25), 11003–11013 (2009)

    Article  CAS  Google Scholar 

  25. Yazdanbakhsh, F., Bläsing, M., Sawada, J.A., Rezaei, S., Müller, M., Baumann, S., Kuznicki, S.M.: Copper exchanged nanotitanate for high temperature H2S adsorption. Ind. Eng. Chem. Res. 53(29), 11734–11739 (2014)

    Article  CAS  Google Scholar 

  26. Fukuda, K., Dokiya, M., Kameyama, T., Kotera, Y.: Catalytic decomposition of hydrogen sulfide. Ind. Eng. Chem. Fundam. 17(4), 243–248 (1978)

    Article  CAS  Google Scholar 

  27. Yasyerli, S., Dogu, G., Ar, I., Dogu, T.: Activities of copper oxide and Cu–V and Cu–Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Ind. Eng. Chem. Res. 40(23), 5206–5214 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Liu, D., Zhou, W., Liu, Q., Huang, Y. (2018). Nano Elemental Metal Desulfurizers. In: High-Temperature H2S Removal from IGCC Coarse Gas. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6817-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6817-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6816-4

  • Online ISBN: 978-981-10-6817-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics