Skip to main content

Status of Coal Gas H2S Removal

  • Chapter
  • First Online:
High-Temperature H2S Removal from IGCC Coarse Gas

Part of the book series: Energy and Environment Research in China ((EERC))

Abstract

Coal is found in huge amounts throughout the world and has lower cost as compared to other fossil fuels , it represents at present about 70% of the world’s proven fossil fuel resources; therefore, coal is probably to remain one of the most important sources of primary energy for a long time, playing a strategic role in the medium–long-term energy production systems. However, coal utilization has a few negative impacts on the environment and atmosphere; the critical issue in promoting coal utilization is environmental pollution control without reducing the energy efficiency. Coal is a complex chemical mixture composed of carbon, hydrogen, and dozens of trace elements. When coal is severed as a fuel source, some of these elements would convert to gaseous emissions, such as sulfur dioxide (SO2) or hydrogen sulfide (H2S) , nitrogen oxides (NO x ) , mercury , and other chemical by-products via the coal combustion or thermal decomposition. These emissions have been established to possess detrimental effects on the environment and human health, which contributes to acid rain, lung cancer, and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franco, A., Diaz, A.R.: The future challenges for “clean coal technologies: joining efficiency increase and pollutant emission control. Energy 34(3), 348–354 (2009)

    Article  CAS  Google Scholar 

  2. Beér, J.M.: Combustion technology developments in power generation in response to environmental challenges. Prog. Energy Combust. Sci. 26, 301–327 (2000)

    Article  Google Scholar 

  3. Longwell, J.P., Rubint, E.S., Wilson, J.: Coal: energy for the future. Prog. Energy Combust. Sci. 21, 269–360 (1995)

    Article  CAS  Google Scholar 

  4. Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., Jensen, A.D.: Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 36(5), 581–625 (2010)

    Article  CAS  Google Scholar 

  5. Chen, W., Xu, R.: Clean coal technology development in China. Energy policy 38(5), 2123–2130 (2010)

    Article  Google Scholar 

  6. Laing, M., Li, C.H., Xie, K.C.: Research progress on high temperature desulfurizer. Coal Convers. 25(1), 13–17 (2002). (In Chinese)

    Google Scholar 

  7. Cao, Y., Zhang, J.M., Wang, Y., Zhang, B.J.: The current development of gas desulfurization technologies at high temperature. Coal Convers. 21(1), 30–35 (1998). (In Chinese)

    CAS  Google Scholar 

  8. Li, Y.X., Li, C.H., Guo, H.X., Zhong, B.: On gas desulfurization at high temperature. Coal Chemical Industry 3(84), 20–24 (1998). (In Chinese)

    Google Scholar 

  9. Duan, L.Q., Sun, S.Y., Bian, J., Yue, L., Yang, Y.P.: Study on the zero-CO2 emission IGCC system integrated with the oxygen transport membrane. Proc. CSEE 34(23), 3874–3882 (2014). (In Chinese)

    Google Scholar 

  10. Gao, Q.E.: Summary of integrated coal gasification combined cycle. Energy Energy Conserv. 12, 33–34 (2012). (In Chinese)

    Google Scholar 

  11. Liang, B., Qiu, L.Y., Zhong, B.H.: Integrated gasification combined cycle (IGCC) and the challenge to chemical engineering. J. Chem. Ind. Eng. (China) 49, 51–57 (1998). (In Chinese)

    Google Scholar 

  12. Guo, J.: Preparation and characterization of manganese-based regenerable sorbents for high temperature H2S removal. CIESC J. 64(7), 2580–2586 (2013). (In Chinese)

    CAS  Google Scholar 

  13. Li, Y.X., Song, J., Li, C.H., Guo, H.X., Xie, K.C.: A study of high temperature desulfurization and regeneration using iron-calcium oxides in a fixed-bed reactor. J. Chem. Eng. Chin. Univ. 15(2), 133–137 (2001). (In Chinese)

    CAS  Google Scholar 

  14. Hepola, J., Simell, P.: Sulphur poisoning of nickel-based hot gas cleaning catalysts in synthetic gasification gas: I. Effect of different process parameters. Appl. Catal. B 14(3–4), 287–303 (1997)

    Article  CAS  Google Scholar 

  15. Hepola, J., Simell, P.: Sulphur poisoning of nickel-based hot gas cleaning catalysts in synthetic gasification gas: II. Chemisorption of hydrogen sulphide. Appl. Catal. B 14(3–4), 305–321 (1997)

    Article  CAS  Google Scholar 

  16. Okabe, K., Murata, K., Nakanishi, M., Ogi, T., Nurunnabi, M., Liu, Y.Y.: Fischer-Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catal. Lett. 128(1–2), 171–176 (2009)

    Article  CAS  Google Scholar 

  17. Ruth, K., Hayes, M., Burch, R., Tsubota, S., Haruta, M.: The effects of SO2 on the oxidation of CO and propane on supported Pt and Au catalysts. Appl. Catal. B 24(3), L133–L138 (2000)

    Article  CAS  Google Scholar 

  18. Yang, S., Guo,Y., Chang, H., Ma, L., Peng, Y., Qu, Z.: Novel effect of SO2 on the SCR reaction over CeO2: mechanism and significance. Appl. Cataly. B Environ. s136–137(12), 19–28 (2013)

    Google Scholar 

  19. Li, H., Wu, C., Li, Y., Zhang, J.: CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ. Sci. Technol. 45(17), 7394–7400 (2011)

    Article  CAS  Google Scholar 

  20. Song, C.: Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal. Today 77(1), 17–49 (2002)

    Article  CAS  Google Scholar 

  21. Eddington, K., Carnell, P.: Compact catalytic reactor controls vent odors from oil field. Oil Gas J. 89(16), 69–71 (1991)

    CAS  Google Scholar 

  22. Spicer, G.W., Woodward, C.: H2S control keeps gas from big offshore field on spec. Oil Gas J. 89(21), 76–78 (1991)

    CAS  Google Scholar 

  23. Westmoreland, P.R., Harrison, D.P.: Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environ. Sci. Technol. 10(7), 659–661 (1976)

    Article  CAS  Google Scholar 

  24. Hepworth, M.T., Ben-Slimane, R., Zhong, S.: Thermodynamic comparison of several sorbent systems for hot coal-derived fuel-gas desulfurization. Energy Fuels 7, 602 (1993)

    Article  CAS  Google Scholar 

  25. Rosso, I., Galletti, C., Bizzi, M., Saracco, G., Specchia, V.: Zinc oxide sorbents for the removal of hydrogen sulfide from syngas. Ind. Eng. Chem. Res. 42(8), 1688–1697 (2003)

    Article  CAS  Google Scholar 

  26. Novochinskii, I.I., Song, C., Ma, X., Liu, X., Shore, L., Lampert, J., Farrauto, R.J.: Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates. Energy Fuels 18(2), 576–583 (2004)

    Article  CAS  Google Scholar 

  27. Novochinskii, I.I., Song, C., Ma, X., Liu, X., Shore, L., Lampert, J., Farrauto, R.J.: Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 2. Wash-coated monolith. Energy Fuels 18(2), 584–589 (2004)

    Article  CAS  Google Scholar 

  28. Wang, X., Sun, T., Yang, J., Zhao, L., Jia, J.: Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles. Chem. Eng. J. 142(1), 48–55 (2008)

    Article  CAS  Google Scholar 

  29. Wang, X., Jia, J., Zhao, L., Sun, T.: Chemisorption of hydrogen sulphide on zinc oxide modified aluminum-substituted SBA-15. Appl. Surf. Sci. 254(17), 5445–5451 (2008)

    Article  CAS  Google Scholar 

  30. Skrzypski, J., Bezverkhyy, I., Heintz, O., Bellat, J.P.: Low temperature H2S removal with metal-doped nanostructure ZnO sorbents: study of the origin of enhanced reactivity in Cu-containing materials. Ind. Eng. Chem. Res. 50(9), 5714–5722 (2011)

    Article  CAS  Google Scholar 

  31. Wang, L.J., Fan, H.L., Shangguan, J., Croiset, E., Chen, Z., Wang, H., Mi, J.: Design of a sorbent to enhance reactive adsorption of hydrogen sulfide. ACS Appl. Mater. Interfaces 6(23), 21167–21177 (2014)

    Article  CAS  Google Scholar 

  32. Sahu, R.C., Patel, R., Ray, B.C.: Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Process. Technol. 92(8), 1587–1592 (2011)

    Article  CAS  Google Scholar 

  33. Long, N.Q., Loc, T.X.: Experimental and modeling study on room-temperature removal of hydrogen sulfide using a low-cost extruded Fe2O3-based adsorbent. Adsorption 22(3), 397–408 (2016)

    Article  CAS  Google Scholar 

  34. Pahalagedara, L.R., Poyraz, A.S., Song, W., Kuo, C.H., Pahalagedara, M.N., Meng, Y.T., Suib, S.L.: Low temperature desulfurization of H2S: High sorption capacities by mesoporous cobalt oxide via increased H2S diffusion. Chem. Mater. 26(22), 6613–6621 (2014)

    Article  CAS  Google Scholar 

  35. Primavera, A., Trovarelli, A., Andreussi, P., Dolcetti, G.: The effect of water in the low-temperature catalytic oxidation of hydrogen sulfide to sulfur over activated carbon. Appl. Catal. A 173(2), 185–192 (1998)

    Article  CAS  Google Scholar 

  36. Adib, F., Bagreev, A., Bandosz, T.J.: Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons. Environ. Sci. Technol. 34(4), 686–692 (2000)

    Article  CAS  Google Scholar 

  37. Bagreev, A., Bashkova, S., Locke, D.C., Bandosz, T.J.: Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide. Environ. Sci. Technol. 35(7), 1537–1543 (2001)

    Article  CAS  Google Scholar 

  38. Kastner, J.R., Das, K.C., Buquoi, Q., Melear, N.D.: Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash. Environ. Sci. Technol. 37(11), 2568–2574 (2003)

    Article  CAS  Google Scholar 

  39. Ros, A., Montes-Moran, M.A., Fuente, E., Nevskaia, D.M., Martin, M.J.: Dried sludges and sludge-based chars for H2S removal at low temperature: influence of sewage sludge characteristics. Environ. Sci. Technol. 40(1), 302–309 (2006)

    Article  CAS  Google Scholar 

  40. Xu, X., Novochinskii, I., Song, C.: Low-temperature removal of H2S by nanoporous composite of polymer-mesoporous molecular sieve MCM-41 as adsorbent for fuel cell applications. Energy Fuels 19(5), 2214–2215 (2005)

    Article  CAS  Google Scholar 

  41. Rezaei, S., Tavana, A., Sawada, J.A., Wu, L., Junaid, A.S., Kuznicki, S.M.: Novel copper-exchanged titanosilicate adsorbent for low temperature H2S removal. Ind. Eng. Chem. Res. 51(38), 12430–12434 (2012)

    Article  CAS  Google Scholar 

  42. Elseviers, W.F., Verelst, H.: Transition metal oxides for hot gas desulphurisation. Fuel 78(5), 601–612 (1999)

    Article  CAS  Google Scholar 

  43. Slimane, R.B., Abbasian, J.: Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures. Adv. Environ. Res. 4(2), 147–162 (2000)

    Article  Google Scholar 

  44. Slimane, R.B., Abbasian, J.: Utilization of metal oxide-containing waste materials for hot coal gas desulfurization. Fuel Process. Technol. 70(2), 97–113 (2001)

    Article  CAS  Google Scholar 

  45. Kobayashi, M., Shirai, H., Nunokawa, M.: Measurements of sulfur capacity proportional to zinc sulfidation on sorbent containing zinc ferrite-silica composite powder in pressurized coal gas. Ind. Eng. Chem. Res. 41(12), 2903–2909 (2002)

    Article  CAS  Google Scholar 

  46. Kobayashi, M., Shirai, H., Nunokawa, M.: Estimation of multiple-cycle desulfurization performance for extremely low-concentration sulfur removal with sorbent containing zinc ferrite-silicon dioxide composite powder. Energy Fuels 16(6), 1378–1386 (2002)

    Article  CAS  Google Scholar 

  47. Bu, X., Ying, Y., Ji, X., Zhang, C., Peng, W.: New development of zinc-based sorbents for hot gas desulfurization. Fuel Process. Technol. 88(2), 143–147 (2007)

    Article  CAS  Google Scholar 

  48. Bu, X., Ying, Y., Ji, X., Zhang, C., Peng, W.: Research improvement in Zn-based sorbent for hot gas desulfurization. Powder Technol. 180(1), 253–258 (2008)

    Article  CAS  Google Scholar 

  49. Gibson, J.B., Harrison, D.P.: The reaction between hydrogen sulfide and spherical pellets of zinc oxide. Ind. Eng. Chem. Process Design Dev. 19(2), 231–237 (1980)

    Article  CAS  Google Scholar 

  50. Pan, Y.G., Perales, J.F., Velo, E., Puigjaner, L.: Kinetic behaviour of iron oxide sorbent in hot gas desulfurization. Fuel 84(9), 1105–1109 (2005)

    Article  CAS  Google Scholar 

  51. Li, Y.X., Zhong, B.: Study of high temperature desulfurization using an iron oxide desulfurizer-kinetics of reduction and sulfidation. J. Fuel Chem. Technol. 2, 130–134 (1998). (In Chinese)

    Google Scholar 

  52. Fan, H., Xie, K., Shangguan, J., Shen, F., Li, C.: Effect of calcium oxide additive on the performance of iron oxide sorbent for high-temperature coal gas desulfurization. J. Nat. Gas Chem. 16(4), 404–408 (2007)

    Article  CAS  Google Scholar 

  53. Zhu, F., Li, C., Fan, H.: Effect of binder on the properties of iron oxide sorbent for hot gas desulfurization. J. Nat. Gas Chem. 19(2), 169–172 (2010)

    Article  CAS  Google Scholar 

  54. Ren, X., Chang, L., Li, F., Xie, K.: Study of intrinsic sulfidation behavior of Fe2O3 for high temperature H2S removal. Fuel 89(4), 883–887 (2010)

    Article  CAS  Google Scholar 

  55. Wang, D., Yu, J., Chang, L., Wang, D.: Effects of addition of Mo on the sulfidation properties of Fe-based sorbents supported on fly ash during hot coal gas desulfurization. Chem. Eng. J. 166(1), 362–367 (2011)

    Article  CAS  Google Scholar 

  56. Fan, H.L., Sun, T., Zhao, Y.P., Shangguan, J., Lin, J.Y.: Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures. Environ. Sci. Technol. 47(9), 4859–4865 (2013)

    Article  CAS  Google Scholar 

  57. Patrick, V., Gavalas, G.R., Flytzani-Stephanopoulos, M., Jothimurugesan, K.: High-temperature sulfidation-regeneration of CuO-A12O3 sorbents. Ind. Eng. Chem. Res. 7, 931–940 (1989)

    Article  Google Scholar 

  58. Li, Z., Flytzani-Stephanopoulos, M.: Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization. Ind. Eng. Chem. Res. 36(1), 187–196 (1997)

    Article  CAS  Google Scholar 

  59. Abbasian, J., Slimane, R.B.: A regenerable copper-based sorbent for H2S removal from coal gases. Ind. Eng. Chem. Res. 37(7), 2775–2782 (1998)

    Article  CAS  Google Scholar 

  60. Wang, J., Guo, J., Parnas, R., Liang, B.: Calcium-based regenerable sorbents for high temperature H2S removal. Fuel 154, 17–23 (2015)

    Article  CAS  Google Scholar 

  61. Ben-Slimane, R., Hepworth, M.T.: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 1. Loading (sulfidation) tests. Energy Fuels 8(6), 1175–1183 (1994)

    Article  CAS  Google Scholar 

  62. Ben-Slimane, R., Hepworth, M.T.: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 2. Regeneration and multicycle tests. Energy Fuels 8(6), 1184–1191 (1994)

    Article  CAS  Google Scholar 

  63. Ben-Slimane, R., Hepworth, M.T.: Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 3. Fixed-bed testing. Energy Fuels 9(2), 372–378 (1995)

    Article  CAS  Google Scholar 

  64. Atakül, H., Wakker, J.P., Gerritsen, A.W., van den Berg, P.J.: Removal of H2S from fuel gases at high temperatures using MnO/γ-Al2O3. Fuel 74(2), 187–191 (1995)

    Article  Google Scholar 

  65. Bakker, W.J., Kapteijn, F., Moulijn, J.A.: A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production: Conceptual process application to coal gas cleaning. Chem. Eng. J. 96(1), 223–235 (2003)

    Article  CAS  Google Scholar 

  66. Wang, J., Liang, B., Parnas, R.: Manganese-based regenerable sorbents for high temperature H2S removal. Fuel 107, 539–546 (2013)

    Article  CAS  Google Scholar 

  67. Alonso, L., Palacios, J.M., Garcıa, E., Moliner, R.: Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Process. Technol. 62(1), 31–44 (2000)

    Article  CAS  Google Scholar 

  68. Alonso, L., Palacios, J.M.: Performance and recovering of a Zn-doped manganese oxide as a regenerable sorbent for hot coal gas desulfurization. Energy Fuels 16(6), 1550–1556 (2002)

    Article  CAS  Google Scholar 

  69. Alonso, L., Palacios, J.M.: A TEM and XRD study of the structural changes involved in manganese-based regenerable sorbents for hot coal gas desulfurization. Chem. Mater. 14(1), 225–231 (2002)

    Article  CAS  Google Scholar 

  70. Xu, S.S., Li, C.H., Gao, S.W.: Gas Purification Technique. Chemical Industry Press, Beijing (2005). (In Chinese)

    Google Scholar 

  71. Kay, D.A.R., Wilson, W.G., Jalan, V.: High temperature thermodynamics and applications of rare earth compounds containing oxygen and sulfur in fuel gas desulfurization and SO2 and NO x removal. J. Alloy. Compd. 193(1–2), 11–16 (1993)

    Article  CAS  Google Scholar 

  72. Zeng, Y., Zhang, S., Groves, F.R., Harrison, D.P.: High temperature gas desulfurization with elemental sulfur production. Chem. Eng. Sci. 54(15–16), 3007–3017 (1999)

    Article  CAS  Google Scholar 

  73. Zeng, Y., Kaytakoglu, S., Harrison, D.P.: Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent. Chem. Eng. Sci. 55(21), 4893–4900 (2000)

    Article  CAS  Google Scholar 

  74. Gao, C.Z., Li, C.H., Yue, L.L., Fan, H.L., Liang, M.S.: Study on reduction and sulfidation of CeO2 desulfurizer at high temperature. Coal Conv. 27(1), 24–27 (2004). (In Chinese)

    CAS  Google Scholar 

  75. Gao, C.Z., Liang, M.S., Fan, H.L., Li, C.H.: Effect of prereduction on cerium oxide as high temperature desulfurizer. J. Taiyuan Univ. Technol. 37(6), 607–610 (2006). (In Chinese)

    CAS  Google Scholar 

  76. Gao, C.Z., Liang, M.S., Li, C.H., Fan, H.L.: Effects of preparation conditions on cerium oxide desulfurization efficiency for hot gas clean-up. J. China Coal Soc. 36(2), 326–330 (2011). (In Chinese)

    CAS  Google Scholar 

  77. Guo, B., Chang, L.P., Xie, K.C.: Research progress in cerium oxide-based sorbents for high temperature desulfurization. Modern Chem. Ind. 26(z2), 23–26 (2006). (In Chinese)

    Google Scholar 

  78. Li, Z., Flytzani-Stephanopoulos, M.: Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization. Ind. Eng. Chem. Res. 36(1), 187–196 (1997)

    Article  CAS  Google Scholar 

  79. Kay, D.A.R., Wilson, W.G.:Methods of desulfurizing gases. US Patent 4826664A (1989)

    Google Scholar 

  80. Kobayashi, M., Flytzani-Stephanopoulos, M.: Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide. Ind. Eng. Chem. Res. 41(13), 3115–3123 (2002)

    Article  CAS  Google Scholar 

  81. Wang, Z., Flytzani-Stephanopoulos, M.: Cerium oxide-based sorbents for regenerative hot reformate gas desulfurization. Energy Fuels 19(5), 2089–2097 (2005)

    Article  CAS  Google Scholar 

  82. Yi, K.B., Podlaha, E.J., Harrison, D.P.: Ceria-zirconia high-temperature desulfurization sorbents. Ind. Eng. Chem. Res. 44(18), 7086–7091 (2005)

    Article  CAS  Google Scholar 

  83. Flytzani-Stephanopoulos, M., Sakbodin, M., Wang, Z.: Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Science 312(5779), 1508–1510 (2006)

    Article  CAS  Google Scholar 

  84. Yasyerli, S.: Cerium-manganese mixed oxides for high temperature H2S removal and activity comparisons with V-Mn, Zn-Mn, Fe-Mn sorbents. Chem. Eng. Process. 47(4), 577–584 (2008)

    Article  CAS  Google Scholar 

  85. Zhao, H., Zhang, D.X., Wang, F.F., Wu, T.T., Gao, J.S.: Modification of ferrite-manganese oxide sorbent by doping with cerium oxide. Process Saf. Environ. Prot. 86(6), 448–454 (2008)

    Article  CAS  Google Scholar 

  86. Zhao, H., Zhang, D.X., Wang, F.F., Wu, T.T., Gao, J.S.: Modification of Fe-Mn mixed oxide COS removal sorbent by rare-earth oxides addition. Process Saf. Environ. Prot. 87(4), 274–280 (2009)

    Article  CAS  Google Scholar 

  87. Guo, B. Study on hot gas desulfurization behavior of cerium-based oxide. Ph.D. dissertation of Taiyuan University of Technology, 2008. (In Chinese)

    Google Scholar 

  88. Zhang, Z.L.: Research on the cerium-iron oxide sorbent as hot gas desulfurizer. Ph.D. dissertation of Taiyuan University of Technology, 2008. (In Chinese)

    Google Scholar 

  89. Dooley, K.M., Kalakota, V., Adusumilli, S.: High-temperature desulfurization of gasifier effluents with rare earth and rare earth transition metal oxides. Energy Fuels 25(3), 1213–1220 (2011)

    Article  CAS  Google Scholar 

  90. Li, R., Krcha, M.D., Janik, M.J., Roy, A.D., Dooley, K.M.: Ce-Mn oxides for high-temperature gasifier effluent desulfurization. Energy Fuels 26(11), 6765–6776 (2012)

    CAS  Google Scholar 

  91. Yoo, K.S., Kim, S.D., Park, S.B.: Sulfation of Al2O3 in flue gas desulfurization by CuO/λ-Al2O3 sorbent. Ind. Eng. Chem. Res. 33(7), 1786–1791 (1994)

    Article  CAS  Google Scholar 

  92. Yu, Q.C., Zhang, S.C., Wang, X.D., Zhang, J., Lu, Z.M.: Study on sulfation of CeO2/γ-Al2O3 sorbent in simulated flue gas. J. Rare Earth 25(2), 184–188 (2007)

    Article  Google Scholar 

  93. Ikenaga, N.O., Ohgaito, Y., Matsushima, H., Suzuki, T.: Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning. Fuel 83(6), 661–669 (2004)

    Article  CAS  Google Scholar 

  94. Xie, W., Chang, L., Wang, D., Xie, K., Wall, T., Yu, J.: Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash. Fuel 89(4), 868–873 (2010)

    Article  CAS  Google Scholar 

  95. Karvan, O., Atakül, H.: Investigation of CuO/mesoporous SBA-15 sorbents for hot gas desulfurization. Fuel Process. Technol. 89(9), 908–915 (2008)

    Article  CAS  Google Scholar 

  96. Karvan, O., Sirkecioğlu, A., Atakül, H.: Investigation of nano-CuO/mesoporous SiO2 materials as hot gas desulphurization sorbents. Fuel Process. Technol. 90(12), 1452–1458 (2009)

    Article  CAS  Google Scholar 

  97. Wan, Z.Y., Liu, B.S., Zhang, F.M., Zhao, X.H.: Characterization and performance of La x Fe y O z /MCM-41 sorbents during hot coal gas desulfurization. Chem. Eng. J. 71(2), 594–602 (2011)

    Article  CAS  Google Scholar 

  98. Liu, B.S., Wie, X.N., Zhan, Y.P., Chang, R.Z., Subhan, F., Au, C.T.: Preparation and desulfurization performance of LaMeO x /SBA-15 for hot coal gas. Appl. Catal. B 102(1–2), 27–36 (2011)

    Article  CAS  Google Scholar 

  99. Liu, B.S., Wan, Z.Y., Zhan, Y.P., Au, C.T.: Desulfurization of hot coal gas over high-surface-area LaMeO x /MCM-41 sorbents. Fuel 98, 95–102 (2012)

    Article  CAS  Google Scholar 

  100. Zhang, Z.F., Liu, B.S., Wang, F., Wang, W.S., Xia, C., Zheng, S., Amin, R.: Hydrogen sulfide removal from hot coal gas by various mesoporous silica supported Mn2O3 sorbents. Appl. Surf. Sci. 313, 961–969 (2014)

    Article  CAS  Google Scholar 

  101. Huang, Z.B., Liu, B.S., Wang, X.H., Tang, X.Y., Amin, R.: Different preparation process versus performance of MnxOy/MCM-48 sorbents for hot coal gas desulfurization. Ind. Eng. Chem. Res. 54(45), 11268–11276 (2015)

    Article  CAS  Google Scholar 

  102. Zhang, F.M., Liu, B.S., Zhang, Y., Guo, Y.H., Wan, Z.Y., Subhan, F.: Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. J. Hazard. Mater. 233, 219–227 (2012)

    Article  CAS  Google Scholar 

  103. Zhang, Z.F., Liu, B.S., Wang, F., Li, J.F.: Fabrication and performance of xMnyCe/Hexagonal mesoporous silica sorbents with wormhole-like framework for hot coal gas desulfurization. Energy Fuels 27(12), 7754–7761 (2013)

    Article  CAS  Google Scholar 

  104. Liu, B.S., Guo, Y.H., Zhang, Q.L., Zhang, F.M., Zhao, X.H.: Synthesis of highly ordered nanorod arrays 9Mn1CeMOs and character of high sulfur capacity for hot coal gas desulfurization. Environ. Progress Sustain. Energy 33(4), 1266–1273 (2014)

    CAS  Google Scholar 

  105. Xia, H., Zhang, F., Zhang, Z., Liu, B.: Synthesis of functional xLayMn/KIT-6 and features in hot coal gas desulphurization. Phys. Chem. Chem. Phys. 17(32), 20667–20676 (2015)

    Article  CAS  Google Scholar 

  106. Zhang, Z.F., Liu, B.S., Wang, F., Zheng, S.: High-temperature desulfurization of hot coal gas on Mo modified Mn/KIT-1 sorbents. Chem. Eng. J. 272, 69–78 (2015)

    Article  CAS  Google Scholar 

  107. Huang, Z.B., Liu, B.S., Wang, F., Amin, R.: Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process. Appl. Surf. Sci. 353, 1–10 (2015)

    Article  CAS  Google Scholar 

  108. Huang, Z.B., Liu, B.S., Tang, X.Y., Wang, X.H., Amin, R.: Performance of rare earth oxide doped Mn-based sorbent on various silica supports for hot coal gas desulfurization. Fuel 177, 217–225 (2016)

    Article  CAS  Google Scholar 

  109. Xia, H., Liu, B., Li, Q., Huang, Z., Cheung, A.S.C.: High capacity Mn-Fe-Mo/FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation. Appl. Catal. B 200, 552–565 (2017)

    Article  CAS  Google Scholar 

  110. Xia, H., Liu, B.: High H2O-resistance CaO-MnO x /MSU-H sorbents for hot coal gas desulfurization. J. Hazard. Mater. 324, 281–290 (2017)

    Article  CAS  Google Scholar 

  111. Ramachandran, P.A., Doraiswamy, L.K.: Modeling of noncatalytic gas-solid reactions. AIChE J. 28, 881–900 (1982)

    Article  CAS  Google Scholar 

  112. Do, D.D.: On the validity of the shrinking core model in noncatalytic gas solid reaction. Chem. Eng. Sci. 37, 1477–1481 (1982)

    Article  CAS  Google Scholar 

  113. Erk, H.F., Dudukovic, M.P.: Self-inhibited rate in gas-solid noncatalytic reaction. The shrinking core model. Ind. Eng. Chem. Res. 23, 49–54 (1984)

    CAS  Google Scholar 

  114. Lee, K.T., Koon, O.W.: Modified shrinking unreacted-core model for the reaction between sulfur dioxide and coal fly ash/Cao/CaSO4 sorbent. Chem. Eng. J. 146, 57–62 (2009)

    Article  CAS  Google Scholar 

  115. Szekely, J., Evans, J.W.: A structural model for gas-solid reactions with a moving boundary-II: the effect of grain size, porosity and temperature on the reaction of porous pellets. Chem. Eng. Sci. 26(11), 1901–1913 (1971)

    Article  CAS  Google Scholar 

  116. Szekely, J., Evans, J.W., Sohn, H.Y.: Gas-Solid Reactions. Academic Press, New York (1976)

    Google Scholar 

  117. Georgakis, C., Chang, C.W., Szekely, J.A.: Changing grain size model for gas-solid reaction. Chem. Eng. Sci. 34(8), 1072–1075 (1979)

    Article  Google Scholar 

  118. Sasaoka, E., Sada, N., Uddin, M.A.: Preparation of macroporous lime from natural lime by swelling method with acetic acid for high-temperature desulfurization. Ind. Eng. Chem. Res. 37(10), 3943–3949 (1998)

    Article  CAS  Google Scholar 

  119. Wu, S., Sumie, N., Su, C., Sasaoka, E.: Preparation of macroporous lime from natural lime by swelling method with water and acetic acid mixture for removal of sulfur dioxide at high temperature. Ind. Eng. Chem. Res. 41(5), 1352–1356 (2002)

    Article  CAS  Google Scholar 

  120. Gibsonlll, J.B., Harrison, D.P.: The reaction between hydrogen sulfide and spherical pellets of zinc oxide. Ind. Eng. Chem. Process Design Dev. 19(2), 231–237 (1980)

    Article  Google Scholar 

  121. Ranade, P.V., Harrison, D.P.: The variable property grain model applied to the zinc oxide-hydrogen sulfide reaction. Chem. Eng. Sci. 36(6), 1079–1089 (1981)

    Article  CAS  Google Scholar 

  122. Konttinen, J., Zevenhoven, R., Hupa, M.: Hot gas desulfurisation with zinc titanate sorbents in a fluidised bed 1. Determination of sorbent particle conversion rate model parameters. Ind. Eng. Chem. Res. 36, 2332–2339 (1997)

    Article  CAS  Google Scholar 

  123. Konttinen, J., Zevenhoven, R., Hupa, M.: Hot gas desulfurisation with zinc titanate sorbents in a fluidised bed 2. Reactor model. Ind. Eng. Chem. Res. 36, 2340–2345 (1997)

    Article  CAS  Google Scholar 

  124. Konttinen, J., Zevenhoven, R., Yrjas, P., Hupa, M.: Modelling of sulfided zinc titanate regeneration in a fluidised bed reactor 1. Determination of the solid conversion rate model parameters. Ind. Eng. Chem. Res. 36, 5432–5438 (1997)

    Article  CAS  Google Scholar 

  125. Konttinen, J.T., Zevenhoven, C.A.P., Hupa, M.M.: Modeling of sulfided zinc titanate regeneration in a fluidized-bed reactor. 2. Scale-up of the solid conversion model. Ind. Eng. Chem. Res. 36(12), 5439–5446 (1997)

    Article  CAS  Google Scholar 

  126. Lindner, B., Simonsson, D.: Comparison of structural models for gas-solid teactions in porous solids undergoing structural changes. Chem. Eng. Sci. 36(9), 1519–1527 (1981)

    Article  CAS  Google Scholar 

  127. Sotirchos, S.V., Yu, H.C.: Overlapping grain models for gas-solid reactions with solid product. Ind. Eng. Chem. Process Design Dev. 27(5), 836–845 (1988)

    CAS  Google Scholar 

  128. Lew, S., Sarofim, A.F., Flytzani-Stephanopoulos, M.: Modeling of the sulfidation of zinc-titanium oxide sorbents with hydrogen sulfide. AIChE J. 38(8), 1161–1169 (1992)

    Article  CAS  Google Scholar 

  129. Bhatia, S.K., Perlmutter, D.D.: A random pore model for fluid solid reactions: I. Isothermal kinetic control. AIChE J. 26, 379–386 (1980)

    Article  CAS  Google Scholar 

  130. Bhatia, S.K., Perlmutter, D.D.: A random pore model for fluid solid reactions: II. Diffusion and transport effects. AIChE J. 27, 247–254 (1981)

    Article  CAS  Google Scholar 

  131. Bhatia, S.K., Perlmutter, D.D.: The effect of pore structure on fluid-solid reactions: application to the SO2-lime reaction. AIChE J. 27(2), 226–234 (1981)

    Article  CAS  Google Scholar 

  132. Ebrahim, H.A.: Application of random-pore model to SO2 capture by lime. Ind. Eng. Chem. Res. 49, 117–122 (2010)

    Article  CAS  Google Scholar 

  133. Singer, S.L., Ghoniem, A.F.: An adaptive random pore model for multimodal pore structure evolution with application to char gasification. Energy Fuels 25, 1423–1437 (2011)

    Article  CAS  Google Scholar 

  134. Krishnan, S.V., Sotirchos, S.V.: A variable diffusivity shrinking core model and its application to the direct sulfidation of limestone. Can. J. Chem. Eng. 71, 734–745 (1993)

    Article  CAS  Google Scholar 

  135. Ozaydin, Z., Yasyerli, S., Dogu, G.: Synthesis and activity comparison of copper-incorporated MCM-41-type sorbents prepared by one-pot and impregnation procedures for H2S removal. Ind. Eng. Chem. Res. 47, 1035–1042 (2008)

    Article  CAS  Google Scholar 

  136. Caglayan, P., Yasyerli, S., Ar, I., Dogu, G., Dogu, T.: Kinetics of H2S sorption on manganese oxide and Mn-Fe-Cu mixed oxide prepared by the complexation technique. Int. J. Chem. Reactor Eng. 4, 1–10 (2006)

    Article  Google Scholar 

  137. Ko, T.H., Chu, H., Liou, Y.J.: A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas. J. Hazard. Mater. 147(1), 334–341 (2007)

    Article  CAS  Google Scholar 

  138. Kempegowda, R.S., Laosiripojana, N., Assabumrungrat, S.: High temperature desulfurization over nano-scale high surface area ceria for application in SOFC. Korean J. Chem. Eng. 25(2), 223–230 (2008)

    Article  CAS  Google Scholar 

  139. Guo, L.F., Pan, K.L., Lee, H.M., Chang, M.B.: High-temperature gaseous H2S removal by Zn-Mn-based sorbent. Ind. Eng. Chem. Res. 54(44), 11040–11047 (2015)

    Article  CAS  Google Scholar 

  140. Yoon, Y.I., Kim, M.W., Yoon, Y.S., Kim, S.H.: A kinetic study on medium temperature desulfurization using a natural manganese ore. Chem. Eng. Sci. 58(10), 2079–2087 (2003)

    Article  CAS  Google Scholar 

  141. Sun, J., Modi, S., Liu, K., Lesieur, R., Buglass, J.: Kinetics of zinc oxide sulfidation for packed-bed desulfurizer modeling. Energy Fuels 21(4), 1863–1871 (2007)

    Article  CAS  Google Scholar 

  142. Wang, F.F., Zhang, D.X., Zhao, H., Wu, T.T., Gao, J.S.: Research into the kinetics of COS elimination from syngas at moderate temperatures. Fuel 89(4), 888–893 (2010)

    Article  CAS  Google Scholar 

  143. Hong, Y.S., Zhang, Z.F., Cai, Z.P., Zhao, X.H., Liu, B.S.: Deactivation kinetics model of H2S removal over mesoporous LaFeO3/MCM-41 sorbent during hot coal gas desulfurization. Energy Fuels 28(9), 6012–6018 (2014)

    Article  CAS  Google Scholar 

  144. Zeng, B., Li, H., Huang, T., Liu, C., Yue, H., Liang, B.: Kinetic study on the sulfidation and regeneration of manganese-based regenerable sorbent for high temperature H2S removal. Ind. Eng. Chem. Res. 54(4), 1179–1188 (2015)

    Article  CAS  Google Scholar 

  145. Long, N.Q., Loc, T.X.: Experimental and modeling study on room-temperature removal of hydrogen sulfide using a low-cost extruded Fe2O3-based adsorbent. Adsorption 22(3), 397–408 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Liu, D., Zhou, W., Liu, Q., Huang, Y. (2018). Status of Coal Gas H2S Removal. In: High-Temperature H2S Removal from IGCC Coarse Gas. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6817-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6817-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6816-4

  • Online ISBN: 978-981-10-6817-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics