Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 718 Accesses

Abstract

It’s feasible to synthesize porous carbon materials from MOFs since MOFs can act as a porous template and carbon source at the same time, which simplifies the traditional process for preparing porous carbon. Moreover, the MOF-derived porous carbons possess extraordinarily high surface area and rich porosity that cannot be achieved from conventional method, contributing to enhanced performance in electrochemical energy storage/conversion, gas adsorption/separation or sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia W, Mahmood A, Zou R et al (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866

    Article  Google Scholar 

  2. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mat Chem A 1:14–19

    Article  Google Scholar 

  3. Xia W, Zhang X, Xu L et al (2013) Facile and economical synthesis of metal–organic framework MIL-100(Al) gels for high efficiency removal of microcystin-LR. RSC Adv 3:11007–11013

    Article  Google Scholar 

  4. Volkringer C, Popov D, Loiseau T et al (2009) Synthesis, single–Crystal x-ray microdiffraction, and nmr characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem Mater 21:5695–5697

    Article  Google Scholar 

  5. Xia W, Qiu B, Xia D et al (1935) Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci Rep 2013:3

    Google Scholar 

  6. Fellinger T, White R, Titirici M et al (2012) Borax-mediated formation of carbon aerogels from glucose. Adv Func Mater 22:3254–3260

    Article  Google Scholar 

  7. Aegerter M, Leventis N, Koebel M (2011) Aerogels handbook. Springer-Verlag, New York

    Book  Google Scholar 

  8. Liu B, Shioyama H, Akita T et al (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    Article  Google Scholar 

  9. Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amorós D et al (2004) About reactions occurring during chemical activation with hydroxides. Carbon 42:1371–1375

    Article  Google Scholar 

  10. Yuan D, Chen J, Tan S et al (2009) Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors. Electrochem Commun 11:1191–1194

    Article  Google Scholar 

  11. Liu B, Shioyama H, Jiang H et al (2010) Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456–463

    Article  Google Scholar 

  12. Hu J, Wang H, Gao Q et al (2010) Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon 48:3599–3606

    Article  Google Scholar 

  13. Jiang H, Liu B, Lan Y et al (2011) From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133:11854–11857

    Article  Google Scholar 

  14. Hu M, Reboul J, Furukawa S et al (2011) Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem Commun 47:8124–8126

    Article  Google Scholar 

  15. Radhakrishnan L, Reboul J, Furukawa S et al (2011) Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol. Chem Mater 23:1225–1231

    Article  Google Scholar 

  16. Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152

    Article  Google Scholar 

  17. Yang SJ, Kim T, Im JH et al (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470

    Article  Google Scholar 

  18. Hu M, Reboul J, Furukawa S et al (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864–2867

    Article  Google Scholar 

  19. Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261

    Article  Google Scholar 

  20. Lim S, Suh K, Kim Y et al (2012) Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks. Chem Commun 48:7447–7449

    Article  Google Scholar 

  21. Pachfule P, Biswal BP, Banerjee R (2012) Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem—A Eur J 18:11399–11408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, W. (2018). Synthesis of 3D Porous Carbon and Its Application in Li–S Batteries. In: Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6811-9_6

Download citation

Publish with us

Policies and ethics