Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 742 Accesses

Abstract

Caron materials have been widely used as sorption, electrode, and catalyst support materials due to the low density, high surface area, high stability and excellent conductivity. Nitrogen can be doped in carbon materials to modify the electron structure of carbon atoms to boost their electrochemical performances (e.g. ORR catalysis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo D, Shibuya R, Akiba C et al (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271):361–365

    Article  Google Scholar 

  2. Jiang H, Liu B, Lan Y et al (2011) From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133(31):11854–11857

    Article  Google Scholar 

  3. Ma S, Goenaga G, Call A et al (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem-A Eur J 17(7):2063–2067

    Article  Google Scholar 

  4. Banerjee R, Phan A, Wang B et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  Google Scholar 

  5. Xia W, Zhu J, Guo W et al (2014) Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J Mat Chem A 2(30):11606–11613

    Article  Google Scholar 

  6. Guo W, Xia W, Cai K et al (2017) Kinetic-controlled formation of bimetallic metal–organic framework hybrid structures. Small 13(41):1702049

    Article  Google Scholar 

  7. Gregory J (2009) Monitoring particle aggregation processes. Adv Coll Interface Sci 147:109–123

    Article  Google Scholar 

  8. Smith B, Dichtel W (2014) Mechanistic Studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J Am Chem Soc 136:8783–8789

    Article  Google Scholar 

  9. Zeng Y, Zou R, Luo Z (2015) Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. J Am Chem Soc 137:1020–1023

    Article  Google Scholar 

  10. Jin H, Zhang H, Zhong H et al (2011) Nitrogen-doped carbon xerogel: a novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells. Energy Environ Sci 4(9):3389–3394

    Article  Google Scholar 

  11. Cao B, Veith GM, Diaz RE et al (2013) Cobalt molybdenum oxynitrides: synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew Chem Int Ed 52(41):10753–10757

    Article  Google Scholar 

  12. Wu Z-S, Chen L, Liu J et al (2014) High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv Mater 26(9):1450–1455

    Article  Google Scholar 

  13. Liang H-W, Wei W, Wu Z-S et al (2013) Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135(43):16002–16005

    Article  Google Scholar 

  14. Wang H, Liang Y, Li Y et al (2011) Co1–xS-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew Chem Int Ed 50(46):10969–10972

    Article  Google Scholar 

  15. Pels JR, Kapteijn F, Moulijn JA et al (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33(11):1641–1653

    Article  Google Scholar 

  16. Wu G, Mack NH, Gao W et al (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous Lithium–O2 battery cathodes. ACS Nano 6(11):9764–9776

    Article  Google Scholar 

  17. Silva R, Voiry D, Chhowalla M et al (2013) Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J Am Chem Soc 135(21):7823–7826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, W. (2018). Formation of N-Doped Carbon Nanomaterials for ORR Catalysis and Li Storage. In: Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6811-9_3

Download citation

Publish with us

Policies and ethics