Skip to main content

The Effect of Neurostimulation in Depression

  • Chapter
  • First Online:
Understanding Depression

Abstract

There have been reports of the medical use of electricity since the classical antiquity, but only in the second half of the eighteenth century the effects of electricity in animals and humans were systematically studied, establishing the foundations for the electroconvulsive therapy (ECT), magnetic seizure therapy (MST), transcranial direct-current stimulation (tDCS), vagus nerve stimulation (VNS), deep brain stimulation (DBS), and repetitive transcranial magnetic stimulation (TMS). The most important difference between these methods is that ECT and MST induce seizures, while the other methods produce more subtle acute effects. Magnetic stimulation methods seem to produce an effect that is similar to the one induced by direct electrical stimulation. Nevertheless, all techniques induce electrical currents in the brain, producing functional and structural modifications. Neurostimulation induces neuronal depolarization and increase or decrease of neuron excitability, producing immediate changes in membrane receptors and channels. These effects are followed by a cascade of changes within the neuron, including changes in gene expression and second messengers. Neurostimulation modulates glutamatergic, serotonergic, dopaminergic, GABAergic, and cholinergic neurotransmission. The HPA and sympathoadrenal systems are also modulated by neurostimulation, which reduces the release of corticotrophins and cortisol. These techniques also play a role in the regulation of glial cell activity, neuroinflammation, and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar H, Bukhari F, Nazir M, Anwar MN, Shahzad A. Therapeutic efficacy of neurostimulation for depression: techniques, current modalities, and future challenges. Neurosci Bull. 2016;32:115–26.

    Article  CAS  Google Scholar 

  • Aldini G. Essai théorique et expérimental sur le galvanisme. Paris: Fournier; 1804.

    Google Scholar 

  • Anderson RJ, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Repetitive transcranial magnetic stimulation for treatment resistant depression: re-establishing connections. Clin Neurophysiol. 2016;127:3394–405.

    Article  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.

    Article  CAS  Google Scholar 

  • Bolwig TG. How does electroconvulsive therapy work? Theories on its mechanism. Can J Psychiatr. 2011;56:13–8.

    Article  Google Scholar 

  • Chae JH, Li X, Nahas Z, Kozel FA, George MS. A review of the new minimally invasive brain stimulation techniques in psychiatry. Rev Bras Psiquiatr. 2001;23:100–9.

    Article  Google Scholar 

  • Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, Tedeschi G, Funke K, Di Lazzaro V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10:1–18.

    Article  CAS  Google Scholar 

  • Cretaz E, Brunoni AR, Lafer B. Magnetic seizure therapy for unipolar and bipolar depression: a systematic review. Neural Plast. 2015;2015:521398.

    Article  Google Scholar 

  • Engel A, Kayser S. An overview on clinical aspects in magnetic seizure therapy. J Neural Transm (Vienna). 2016;123:1139–46.

    Article  Google Scholar 

  • George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry. 2000;47:287–95.

    Article  CAS  Google Scholar 

  • Hoirisch-Clapauch S, Mezzasalma MA, Nardi AE. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy. J Psychopharmacol. 2014;28:99–105.

    Article  Google Scholar 

  • Isenberg KE, Zorumski CF. Electroconvulsive therapy. In: Sadock BJ, Sadock VA, editors. Kaplan and Sadock’s comprehensive textbook of psychiatry. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 2503–15.

    Google Scholar 

  • Lisanby SH, Luber B, Finck AD, Schroeder C, Sackeim HA. Deliberate seizure induction with repetitive transcranial magnetic stimulation in nonhuman primates. Arch Gen Psychiatry. 2001a;58:199–200.

    Article  CAS  Google Scholar 

  • Lisanby SH, Schlaepfer TE, Fisch HU, Sackeim HA. Magnetic seizure therapy of major depression. Arch Gen Psychiatry. 2001b;58:303–5.

    Article  CAS  Google Scholar 

  • Ma J, Zhang Z, Su Y, Kang L, Geng D, Wang Y, Luan F, Wang M, Cui H. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons. Neurochem Int. 2013;62:84–91.

    Article  CAS  Google Scholar 

  • Martinotti G, Ricci V, Di Nicola M, Caltagirone C, Bria P, Angelucci F. Brain-derived neurotrophic factor and electroconvulsive therapy in a schizophrenic patient with treatment-resistant paranoid-hallucinatory symptoms. J ECT. 2011;27:e44–6.

    Article  Google Scholar 

  • Merton PA, Hill DK, Morton HB, Marsden CD. Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet. 1982;2:597–600.

    Article  CAS  Google Scholar 

  • Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis ZJ, Downar J, Modirrousta M, Patry S, Vila-Rodriguez F, Lam RW, MacQueen GM, Parikh SV, Ravindran AV, Group CDW. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 4. Neurostimulation treatments. Can J Psychiatr. 2016;61:561–75.

    Article  Google Scholar 

  • Morishita T, Fayad SM, Higuchi MA, Nestor KA, Foote KD. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics. 2014;11:475–84.

    Article  CAS  Google Scholar 

  • Nordanskog P, Dahlstrand U, Larsson MR, Larsson EM, Knutsson L, Johanson A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression: a volumetric magnetic resonance imaging study. J ECT. 2010;26:62–7.

    Article  Google Scholar 

  • Parent A. Giovanni Aldini: from animal electricity to human brain stimulation. Can J Neurol Sci. 2004;31:576–84.

    Article  Google Scholar 

  • Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114:589–95.

    Article  Google Scholar 

  • Ren J, Li H, Palaniyappan L, Liu H, Wang J, Li C, Rossini PM. Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: a systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;51:181–9.

    Article  Google Scholar 

  • Walker BR, Easton A, Gale K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia. 1999;40:1051–7.

    Article  CAS  Google Scholar 

  • Ziemann U. Thirty years of transcranial magnetic stimulation: where do we stand? Exp Brain Res. 2017;235:973–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael C. R. Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Freire, R.C.R., Nardi, A.E. (2018). The Effect of Neurostimulation in Depression. In: Kim, YK. (eds) Understanding Depression . Springer, Singapore. https://doi.org/10.1007/978-981-10-6580-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6580-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6579-8

  • Online ISBN: 978-981-10-6580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics