Skip to main content

Analytical Solution to Nonlinear Non-Gaussian Langevin Equation

  • Chapter
  • First Online:
Statistical Mechanics for Athermal Fluctuation

Part of the book series: Springer Theses ((Springer Theses))

  • 636 Accesses

Abstract

The non-Gaussian Langevin equation under nonlinear friction is derived from microscopic dynamics by generalizing the expansion in Chap. 7. We also present an analytical solution to non-Gaussian Langevin equation in the presence of nonlinear frictions; a full-order asymptotic formula for the steady PDF is derived for large frictional limit. The first-order approximation of our formula leads to the independent-kick model, and higher-order approximation corresponds to multiple kicks during relaxation. As a demonstration, a granular motor under dry friction is finally addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, in the case with the cubic friction \(f(\mathcal {V})=a\mathcal {V}+b\mathcal {V}^3\), the characteristic velocity scale of the friction function \(f(\mathcal {V})\) is given by \(\mathcal {V}^*\equiv \sqrt{a/b}\).

  2. 2.

    This assumption is valid for the first-order approximation. Modification due to higher order corrections is discussed in Sect. 8.3.6.

  3. 3.

    We note that the definition of \(\beta ^{-1}\) is a little different from that in Refs. [2,3,4], where \(\beta ^{-1}\) is defined by \(\beta ^{-1}\equiv \varepsilon ^{1/2}\rho Sv_0^2/\sqrt{2}\pi \gamma R_{\mathrm {I}}\).

References

  1. P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Phys. Rev. Lett. 104, 248001 (2010)

    Article  ADS  Google Scholar 

  2. A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, A. Puglisi, Phys. Rev. Lett. 110, 120601 (2013)

    Article  ADS  Google Scholar 

  3. A. Gnoli, A. Puglisi, H. Touchette, Europhys. Lett. 102, 14002 (2013)

    Article  ADS  Google Scholar 

  4. A. Gnoli, A. Sarracino, A. Puglisi, A. Petri, Phys. Rev. E 87, 052209 (2013)

    Article  ADS  Google Scholar 

  5. C. van den Broeck, J. Stat. Phys. 31, 467 (1983)

    Article  ADS  Google Scholar 

  6. J. Łuczka, T. Czernik, P. Hänggi, Phys. Rev. E 56, 3968 (1997)

    Article  ADS  Google Scholar 

  7. A. Baule, P. Sollich, Europhys. Lett. 97, 20001 (2012)

    Article  ADS  Google Scholar 

  8. A. Baule, P. Sollich, Phys. Rev. E 87, 032112 (2013)

    Article  ADS  Google Scholar 

  9. K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, J. Stat. Phys. 160, 1294 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Talbot, R.D. Wildman, P. Viot, Phys. Rev. Lett. 107, 138001 (2011)

    Article  ADS  Google Scholar 

  11. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 4th edn. (Springer, Berlin, 2009)

    Google Scholar 

  12. B.N.J. Persson, Sliding Friction (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  13. B. Wang, S.M. Anthony, S.C. Bae, S. Granick, Proc. Natl. Acad. Sci. USA 106, 15160 (2009)

    Article  ADS  Google Scholar 

  14. B. Wang, J. Kuo, S.C. Bae, S. Granick, Nat. Mat. 11, 481 (2012)

    Article  Google Scholar 

  15. H. Kawamura, T. Hatano, N. Kato, S. Biswas, B.K. Chakrabarti, Rev. Mod. Phys. 84, 839 (2012)

    Article  ADS  Google Scholar 

  16. H. Olsson, K.J. Åström, C. Canudas de Wit, M. Gäfvert, P. Lischinsky, Eur. J. Control 4, 176 (1998)

    Article  Google Scholar 

  17. P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006)

    Article  ADS  Google Scholar 

  18. V. Bormuth, V. Varga, J. Howard, E. Schäffer, Science 325, 870 (2009)

    Article  ADS  Google Scholar 

  19. C. Veigel, C.F. Schmidt, Science 325, 826 (2009)

    Article  ADS  Google Scholar 

  20. A. Jagota, C.-Y. Hui, Mater. Sci. Eng. R 72, 253 (2011)

    Google Scholar 

  21. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, Nature 430, 525 (2004)

    Article  ADS  Google Scholar 

  22. Q. Li, Y. Dong, D. Perez, A. Martini, R.W. Carpick, Phys. Rev. Lett. 106, 126101 (2011)

    Article  ADS  Google Scholar 

  23. A.J. Weymouth, D. Meuer, P. Mutombo, T. Wutscher, M. Ondracek, P. Jelinek, F.J. Giessibl, Phys. Rev. Lett. 111, 126103 (2013)

    Article  ADS  Google Scholar 

  24. A. Kawarada, H. Hayakawa, J. Phys. Soc. Jpn. 73, 2037 (2004)

    Article  ADS  Google Scholar 

  25. H. Hayakawa, Physica D 205, 48 (2005)

    Google Scholar 

  26. P.-G. de Gennes, J. Stat. Phys. 119, 953 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Touchette, E. van der Straeten, W. Just, J. Phys. A Math. Theor. 43, 445002 (2010)

    Article  Google Scholar 

  28. A.M. Menzel, N. Goldenfeld, Phys. Rev. E 84, 011122 (2011)

    Article  ADS  Google Scholar 

  29. J. Talbot, P. Viot, Phys. Rev. E 85, 021310 (2012)

    Article  ADS  Google Scholar 

  30. Y. Chen, A. Baule, H. Touchette, W. Just, Phys. Rev. E 88, 052103 (2013)

    Article  ADS  Google Scholar 

  31. A. Sarracino, A. Gnoli, A. Puglisi, Phys. Rev. E 87, 040101 (2013)

    Article  ADS  Google Scholar 

  32. T.G. Sano, H. Hayakawa, Phys. Rev. E 89, 032104 (2014)

    Article  ADS  Google Scholar 

  33. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  34. N.G. van Kampen, Can. J. Phys. 39, 551 (1961)

    Article  ADS  Google Scholar 

  35. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, Amsterdam, 2007)

    Google Scholar 

  36. R. Strichartz, A Guide to Distribution Theory and Fourier Transforms (World Scientific, Singapore, 2008)

    Google Scholar 

  37. L.O. Gálvez, D. van der Meer, J. Stat. Mech. P043206 (2016)

    Google Scholar 

  38. T.G. Sano, K. Kanazawa, H. Hayakawa, Phys. Rev. E 94, 032910 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanazawa, K. (2017). Analytical Solution to Nonlinear Non-Gaussian Langevin Equation. In: Statistical Mechanics for Athermal Fluctuation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6332-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6332-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6330-5

  • Online ISBN: 978-981-10-6332-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics