Skip to main content

Microscopic Derivation of Linear Non-Gaussian Langevin Equation

  • Chapter
  • First Online:
Statistical Mechanics for Athermal Fluctuation

Part of the book series: Springer Theses ((Springer Theses))

  • 622 Accesses

Abstract

A linear non-Gaussian–Langevin equation is derived from microscopic dynamics by a systematic expansion. We generalize the conventional system size expansion for systems associated with thermal and athermal reservoirs, and find an explicit condition whereby the non-Gaussianity of athermal fluctuation becomes dominant with the violation of the central limit theorem. We also derive an inverse formula to infer the statistics of athermal bath from the statistics of the tracer particle. To demonstrate the utility of our formulation, we apply our expansion to a granular motor under viscous friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Ben-Isaac, Y.K. Park, G. Popescu, F.L.H. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011)

    Article  ADS  Google Scholar 

  2. N. Gov, Phys. Rev. Lett. 93, 268104 (2004)

    Article  ADS  Google Scholar 

  3. P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Phys. Rev. Lett. 104, 248001 (2010)

    Article  ADS  Google Scholar 

  4. J. Talbot, R.D. Wildman, P. Viot, Phys. Rev. Lett. 107, 138001 (2011)

    Article  ADS  Google Scholar 

  5. A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, A. Puglisi, Phys. Rev. Lett. 110, 120601 (2013)

    Article  ADS  Google Scholar 

  6. A. Gnoli, A. Puglisi, H. Touchette, Europhys. Lett. 102, 14002 (2013)

    Article  ADS  Google Scholar 

  7. A. Gnoli, A. Sarracino, A. Puglisi, A. Petri, Phys. Rev. E 87, 052209 (2013)

    Article  ADS  Google Scholar 

  8. J. Gabelli, B. Reulet, Phys. Rev. B 80, 161203(R) (2009)

    Article  ADS  Google Scholar 

  9. A.M. Zaklikiewicz, Solid-State Electron. 43, 11 (1999)

    Article  ADS  Google Scholar 

  10. Y.M. Blanter, M. Bu, D.P. Theh, U. De Gene, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  11. J.P. Pekola, Phys. Rev. Lett. 93, 206601 (2004)

    Article  ADS  Google Scholar 

  12. K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 114, 090601 (2015)

    Article  ADS  Google Scholar 

  13. I. Eliazar, J. Klafter, J. Stat. Phys. 111, 739 (2003)

    Article  Google Scholar 

  14. C. van den Broeck, J. Stat. Phys. 31, 467 (1983)

    Article  ADS  Google Scholar 

  15. J. Łuczka, T. Czernik, P. Hanggi, Phys. Rev. E 56, 3968 (1997)

    Article  ADS  Google Scholar 

  16. A. Baule, P. Sollich, Europhys. Lett. 97, 20001 (2012)

    Article  ADS  Google Scholar 

  17. A. Baule, P. Sollich, Phys. Rev. E 87, 032112 (2013)

    Article  ADS  Google Scholar 

  18. K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  19. K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997)

    Article  ADS  Google Scholar 

  20. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  21. K. Kanazawa, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 108, 210601 (2012)

    Article  ADS  Google Scholar 

  22. R. Strichartz, A Guide to Distribution Theory and Fourier Transforms (World Scientific, Singapore, 2008)

    Google Scholar 

  23. S. Albeveriob, B. Smii, Stoch. Process. Appl. 125, 1009 (2015)

    Article  Google Scholar 

  24. B. Cleuren, R. Eichhorn, J. Stat. Mech. (2008) P10011

    Google Scholar 

  25. L.O. Gálvez, D. van der Meer, J. Stat. Mech. (2016) P043206

    Google Scholar 

  26. J.S. Olafsen, J.S. Urbach, Phys. Rev. E 60, 2468(R) (1999)

    Article  ADS  Google Scholar 

  27. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series: More Special Functions, vol. 3 (Gordon and Breanch Science Publishers, Amsterdam, 1990)

    MATH  Google Scholar 

  28. T.G. Sano, K. Kanazawa, H. Hayakawa, Phys. Rev. E 94, 032910 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanazawa, K. (2017). Microscopic Derivation of Linear Non-Gaussian Langevin Equation. In: Statistical Mechanics for Athermal Fluctuation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6332-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6332-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6330-5

  • Online ISBN: 978-981-10-6332-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics